Menu Close

calculus-prove-that-0-1-1-x-p-1-x-q-x-r-1-log-x-dx-log-p-q-r-1-r-p-r-q-r-m-n-1970-




Question Number 116796 by mnjuly1970 last updated on 08/Oct/20
        ...      calculus  ...         prove  that ::        ∫_0 ^( 1) (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=^(???) log( (((p+q+r+1)r)/((p+r)(q+r))) )            m.n.1970
$$\:\:\:\:\:\:\:\:…\:\:\:\:\:\:{calculus}\:\:… \\ $$$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}\overset{???} {=}{log}\left(\:\frac{\left({p}+{q}+{r}+\mathrm{1}\right){r}}{\left({p}+{r}\right)\left({q}+{r}\right)}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$\: \\ $$
Answered by mindispower last updated on 08/Oct/20
let f(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x)))dx  f′(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x))).log(x)dx  =∫_0 ^1 (x^(r+a−1) +x^(p+q+r−1+a) −x^(p+r−1+a) −x^(q+r−1+a) )dx    =(1/(r+a))+(1/(r+q+a+1))−(1/(p+r+a))−(1/(q+r+a))  we want f(0)  f(a)=∫((1/(r+a))+(1/(r+q+a+1+p))−(1/(p+r+a))−(1/(q+r+a)))da  =ln(((r+a)(r+q+p+a+1))/((p+r+a)(q+r+a)))+c  lim_(a→∞) f(a)=0⇒c=0  f(0)=ln(((r(p+q+r+1))/((p+r)(q+r))))  ∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=ln(((r(p+q+r+1))/((p+r)(q+r))))
$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}+{a}} }{{log}\left({x}\right)}{dx} \\ $$$${f}'\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}+{a}} }{{log}\left({x}\right)}.{log}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{r}+{a}−\mathrm{1}} +{x}^{{p}+{q}+{r}−\mathrm{1}+{a}} −{x}^{{p}+{r}−\mathrm{1}+{a}} −{x}^{{q}+{r}−\mathrm{1}+{a}} \right){dx}\:\: \\ $$$$=\frac{\mathrm{1}}{{r}+{a}}+\frac{\mathrm{1}}{{r}+{q}+{a}+\mathrm{1}}−\frac{\mathrm{1}}{{p}+{r}+{a}}−\frac{\mathrm{1}}{{q}+{r}+{a}} \\ $$$${we}\:{want}\:{f}\left(\mathrm{0}\right) \\ $$$${f}\left({a}\right)=\int\left(\frac{\mathrm{1}}{{r}+{a}}+\frac{\mathrm{1}}{{r}+{q}+{a}+\mathrm{1}+{p}}−\frac{\mathrm{1}}{{p}+{r}+{a}}−\frac{\mathrm{1}}{{q}+{r}+{a}}\right){da} \\ $$$$={ln}\frac{\left({r}+{a}\right)\left({r}+{q}+{p}+{a}+\mathrm{1}\right)}{\left({p}+{r}+{a}\right)\left({q}+{r}+{a}\right)}+{c} \\ $$$$\underset{{a}\rightarrow\infty} {\mathrm{lim}}{f}\left({a}\right)=\mathrm{0}\Rightarrow{c}=\mathrm{0} \\ $$$${f}\left(\mathrm{0}\right)={ln}\left(\frac{{r}\left({p}+{q}+{r}+\mathrm{1}\right)}{\left({p}+{r}\right)\left({q}+{r}\right)}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{{p}} \right)\left(\mathrm{1}−{x}^{{q}} \right){x}^{{r}−\mathrm{1}} }{{log}\left({x}\right)}{dx}={ln}\left(\frac{{r}\left({p}+{q}+{r}+\mathrm{1}\right)}{\left({p}+{r}\right)\left({q}+{r}\right)}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 08/Oct/20
tayyeballah  bravo  thank you..
$${tayyeballah}\:\:{bravo}\:\:{thank}\:{you}.. \\ $$
Commented by mindispower last updated on 08/Oct/20
withe Pleasur
$${withe}\:{Pleasur}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *