Menu Close

calculus-prove-that-0-1-1-x-p-1-x-q-x-r-1-log-x-dx-log-p-q-r-1-r-p-r-q-r-m-n-1970-




Question Number 116796 by mnjuly1970 last updated on 08/Oct/20
        ...      calculus  ...         prove  that ::        ∫_0 ^( 1) (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=^(???) log( (((p+q+r+1)r)/((p+r)(q+r))) )            m.n.1970
calculusprovethat::01(1xp)(1xq)xr1log(x)dx=???log((p+q+r+1)r(p+r)(q+r))m.n.1970
Answered by mindispower last updated on 08/Oct/20
let f(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x)))dx  f′(a)=∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1+a) )/(log(x))).log(x)dx  =∫_0 ^1 (x^(r+a−1) +x^(p+q+r−1+a) −x^(p+r−1+a) −x^(q+r−1+a) )dx    =(1/(r+a))+(1/(r+q+a+1))−(1/(p+r+a))−(1/(q+r+a))  we want f(0)  f(a)=∫((1/(r+a))+(1/(r+q+a+1+p))−(1/(p+r+a))−(1/(q+r+a)))da  =ln(((r+a)(r+q+p+a+1))/((p+r+a)(q+r+a)))+c  lim_(a→∞) f(a)=0⇒c=0  f(0)=ln(((r(p+q+r+1))/((p+r)(q+r))))  ∫_0 ^1 (((1−x^p )(1−x^q )x^(r−1) )/(log(x)))dx=ln(((r(p+q+r+1))/((p+r)(q+r))))
letf(a)=01(1xp)(1xq)xr1+alog(x)dxf(a)=01(1xp)(1xq)xr1+alog(x).log(x)dx=01(xr+a1+xp+q+r1+axp+r1+axq+r1+a)dx=1r+a+1r+q+a+11p+r+a1q+r+awewantf(0)f(a)=(1r+a+1r+q+a+1+p1p+r+a1q+r+a)da=ln(r+a)(r+q+p+a+1)(p+r+a)(q+r+a)+climaf(a)=0c=0f(0)=ln(r(p+q+r+1)(p+r)(q+r))01(1xp)(1xq)xr1log(x)dx=ln(r(p+q+r+1)(p+r)(q+r))
Commented by mnjuly1970 last updated on 08/Oct/20
tayyeballah  bravo  thank you..
tayyeballahbravothankyou..
Commented by mindispower last updated on 08/Oct/20
withe Pleasur
withePleasur

Leave a Reply

Your email address will not be published. Required fields are marked *