Menu Close

calculus-prove-that-0-1-x-n-1-ln-2-1-x-dx-2-n-k-1-n-H-k-k-




Question Number 126631 by mnjuly1970 last updated on 23/Dec/20
                      ...calculus...       prove that::      ::      Ω=^(??)  ∫_0 ^( 1) x^(n−1) ln^2 (1−x)dx                    = (2/n)Σ_(k=1) ^n ((H_k /k)) ✓
calculusprovethat::::Ω=??01xn1ln2(1x)dx=2nnk=1(Hkk)
Answered by mindispower last updated on 23/Dec/20
β(x,y)=∫_0 ^1 t^(x−1) (1−t)^(y−1) dt  (∂^2 β/∂y^2 )=∫_0 ^1 t^(x−1) ln^2 (1−t)y^(t−1) dt  ((∂^2 β(x,y))/∂y^2 )∣_((x,y)=(n,1)) =∫_0 ^1 t^(n−1) ln^2 (1−t)dt  (∂β/∂y)=(Ψ(y)−Ψ(x+y))β(x,y)  (∂^2 β/∂y^2 )=(Ψ^1 (y)−Ψ^1 (x+y))β(x,y)+(Ψ(y)−Ψ(x+y))^2 β(x,y)  Ω=(Ψ^1 (1)−Ψ^1 (1+n))β(1,n)+(Ψ(1)−Ψ(1+n))^2 β(1,n)  Ω=(Σ_(k=1) ^n  (1/k^2 ))(1/n)+(Σ_(k=1) ^n (1/k))^2 .(1/n)  H_n =Σ_(k≤n) (1/k),H_n ^((2)) =Σ_(k≤n) (1/k^2 )  =((H_n ^((2)) +H_n )/n)
β(x,y)=01tx1(1t)y1dt2βy2=01tx1ln2(1t)yt1dt2β(x,y)y2(x,y)=(n,1)=01tn1ln2(1t)dtβy=(Ψ(y)Ψ(x+y))β(x,y)2βy2=(Ψ1(y)Ψ1(x+y))β(x,y)+(Ψ(y)Ψ(x+y))2β(x,y)Ω=(Ψ1(1)Ψ1(1+n))β(1,n)+(Ψ(1)Ψ(1+n))2β(1,n)Ω=(nk=11k2)1n+(nk=11k)2.1nHn=kn1k,Hn(2)=kn1k2=Hn(2)+Hnn
Commented by mnjuly1970 last updated on 23/Dec/20
very nice..thanking...
verynice..thanking
Answered by mnjuly1970 last updated on 23/Dec/20
solution:    consider:       I_n =∫_0 ^( 1) x^(n−1) ln(1−x)dx       we can write:       I_n =(1/n)∫(x^n −1) ^′ ln(1−x)dx       =(1/n){[(x^n −1)ln(1−x)]_0 ^1 +∫_0 ^( 1) ((x^n −1)/(1−x))dx}  =((−H_n )/n)  .... (1)   put::  Ω=∫_0 ^( 1) x^(n−1) ln^2 (1−x)dx                    =(1/n)∫_0 ^( 1) (x^n −1) ^′ ln^2 (1−x)dx            =(1/n){[(x^n −1)ln^2 (1−x)]_0 ^1 +2∫_0 ^( 1) ((x^n −1)/(1−x))ln(1−x)dx    =(2/n) ∫_0 ^( 1) (−Σ_(k=1) ^n x^(k−1) )ln(1−x)dx   =((−2)/n^2 )Σ_(k=1) ^n ∫_0 ^( 1) x^(k−1) ln(1−x)dx=(2/n)Σ_(k=1) ^n (H_k /k) ✓
solution:consider:In=01xn1ln(1x)dxwecanwrite:In=1n(xn1)ln(1x)dx=1n{[(xn1)ln(1x)]01+01xn11xdx}=Hnn.(1)put::Ω=01xn1ln2(1x)dx=1n01(xn1)ln2(1x)dx=1n{[(xn1)ln2(1x)]01+201xn11xln(1x)dx=2n01(nk=1xk1)ln(1x)dx=2n2nk=101xk1ln(1x)dx=2nnk=1Hkk

Leave a Reply

Your email address will not be published. Required fields are marked *