calculus-prove-that-0-1-x-n-1-ln-2-1-x-dx-2-n-k-1-n-H-k-k- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 126631 by mnjuly1970 last updated on 23/Dec/20 …calculus…provethat::::Ω=??∫01xn−1ln2(1−x)dx=2n∑nk=1(Hkk)✓ Answered by mindispower last updated on 23/Dec/20 β(x,y)=∫01tx−1(1−t)y−1dt∂2β∂y2=∫01tx−1ln2(1−t)yt−1dt∂2β(x,y)∂y2∣(x,y)=(n,1)=∫01tn−1ln2(1−t)dt∂β∂y=(Ψ(y)−Ψ(x+y))β(x,y)∂2β∂y2=(Ψ1(y)−Ψ1(x+y))β(x,y)+(Ψ(y)−Ψ(x+y))2β(x,y)Ω=(Ψ1(1)−Ψ1(1+n))β(1,n)+(Ψ(1)−Ψ(1+n))2β(1,n)Ω=(∑nk=11k2)1n+(∑nk=11k)2.1nHn=∑k⩽n1k,Hn(2)=∑k⩽n1k2=Hn(2)+Hnn Commented by mnjuly1970 last updated on 23/Dec/20 verynice..thanking… Answered by mnjuly1970 last updated on 23/Dec/20 solution:consider:In=∫01xn−1ln(1−x)dxwecanwrite:In=1n∫(xn−1)′ln(1−x)dx=1n{[(xn−1)ln(1−x)]01+∫01xn−11−xdx}=−Hnn….(1)put::Ω=∫01xn−1ln2(1−x)dx=1n∫01(xn−1)′ln2(1−x)dx=1n{[(xn−1)ln2(1−x)]01+2∫01xn−11−xln(1−x)dx=2n∫01(−∑nk=1xk−1)ln(1−x)dx=−2n2∑nk=1∫01xk−1ln(1−x)dx=2n∑nk=1Hkk✓ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-x-y-z-are-three-distinct-complex-numbers-such-that-x-y-z-y-z-x-z-x-y-0-then-find-the-value-of-x-2-y-z-2-Next Next post: Question-126632 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.