Question Number 112119 by mnjuly1970 last updated on 06/Sep/20
$$\:\:\:\:\:\:\:\:\:\:\:\:\:….{calculus}…. \\ $$$${prove}\:{that}::: \\ $$$${if}\:\:\:\Omega\:=\int_{\mathrm{0}\:\:} ^{\:\mathrm{1}} {ln}\left({ln}\left(\mathrm{1}−\sqrt{{x}}\:\right)\right){dx} \\ $$$${then} \\ $$$$\mathscr{R}{e}\left(\Omega\right)\::=\:−\gamma\:+\:{ln}\left(\mathrm{2}\right)…. \\ $$$$ \\ $$$${m}.{n}.\:{july}\:\mathrm{1970}# \\ $$
Answered by maths mind last updated on 06/Sep/20
$${u}={ln}\left(\mathrm{1}−\sqrt{{x}}\right)\Rightarrow{x}=\left(\mathrm{1}−{e}^{{u}} \right)^{\mathrm{2}} \Rightarrow{dx}=−\mathrm{2}{e}^{{u}} \left(\mathrm{1}−{e}^{{u}} \right){du} \\ $$$$\Omega=\int_{\mathrm{0}} ^{−\infty} {ln}\left({u}\right).−\mathrm{2}{e}^{{u}} \left(\mathrm{1}−{e}^{{u}} \right){du} \\ $$$${we}\:{use}\:{ln}\left({z}\right)={ln}\mid{z}\mid+{iarg}\left({z}\right)\:{z}\notin{IR}_{−} ^{\ast} \\ $$$${put}\:{u}=−{t}\Rightarrow=\int_{\mathrm{0}} ^{\infty} {ln}\left(−{t}\right).\mathrm{2}{e}^{−{t}} \left(\mathrm{1}−{e}^{−{t}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left({ln}\left({t}\right)+{i}\pi\right)\mathrm{2}{e}^{{t}} \left(\mathrm{1}−{e}^{{t}} \right){dt} \\ $$$${Re}\left(\Omega\right)=\int_{\mathrm{0}} ^{\infty} \mathrm{2}{ln}\left({t}\right){e}^{−{t}} {dt}−\mathrm{2}\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−\mathrm{2}{t}} {dt} \\ $$$$\Gamma\left({z}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{z}−\mathrm{1}} {e}^{−{t}} {dt}\Rightarrow\Gamma'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{+\infty} {ln}\left({t}\right){e}^{−{t}} {dt}=\gamma \\ $$$${Re}\left(\Omega\right)=−\mathrm{2}\gamma−\mathrm{2}\int_{\mathrm{0}} ^{+\infty} {ln}\left(\frac{{s}}{\mathrm{2}}\right){e}^{−{s}} .\frac{{ds}}{\mathrm{2}} \\ $$$$=−\mathrm{2}\gamma−\int_{\mathrm{0}} ^{+\infty} {ln}\left({s}\right){e}^{−{s}} {ds}+{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−{s}} {ds} \\ $$$$=−\mathrm{2}\gamma+\gamma+{ln}\left(\mathrm{2}\right)\left[−{e}^{−{s}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=−\gamma+{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 06/Sep/20
$${peace}\:{be}\:{upon}\:{you}\:{master}\: \\ $$$$..{gratful}\:{for}\:{your}\:{attantion} \\ $$$${and}\:{favor}… \\ $$