Menu Close

calculus-x-y-z-R-and-x-2-y-2-z-2-1-find-min-x-y-z-R-yz-x-xz-y-xy-z-m-n-1970-




Question Number 118023 by 1549442205PVT last updated on 14/Oct/20
         ..calculus..    x,y,z ∈R^+   and  x^2 +y^2 +z^2  =1                   find            min_(x,y,z∈R^(+    ) ) ((((yz)/x)+((xz)/y)+((xy)/z)) )=?           m.n.1970..
$$ \\ $$$$\:\:\:\:\:\:\:..{calculus}.. \\ $$$$\:\:{x},{y},{z}\:\in\mathbb{R}^{+} \:\:{and}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\mathrm{1} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{find}\:\:\:\:\:\: \\ $$$$\:\:\:\:{min}_{{x},{y},{z}\in\mathbb{R}^{+\:\:\:\:} } \left(\left(\frac{{yz}}{{x}}+\frac{{xz}}{{y}}+\frac{{xy}}{{z}}\right)\:\right)=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970}.. \\ $$
Answered by MJS_new last updated on 14/Oct/20
x, y, z symmetric ⇒ x=y=z=((√3)/3)  answer is (√3)
$${x},\:{y},\:{z}\:\mathrm{symmetric}\:\Rightarrow\:{x}={y}={z}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\mathrm{answer}\:\mathrm{is}\:\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *