Menu Close

calulate-using-Riemann-sums-tbe-limit-of-this-sequence-k-n-2n-sin-pi-k-




Question Number 100297 by Coronavirus last updated on 26/Jun/20
calulate using Riemann sums  tbe limit of this sequence    Σ_(k=n) ^(2n) sin ((π/k))
calulateusingRiemannsumstbelimitofthissequence2nk=nsin(πk)
Answered by abdomsup last updated on 26/Jun/20
A_n =_(p=k−n)   Σ_(p=0) ^n  sin((π/(p+n)))  we have x−(x^3 /6)≤sinx≤x ⇒  (π/k)−(π^3 /(6k^3 ))≤sin((π/k))≤(π/k)  ⇒Σ_(k=n) ^(2n)  (π/k)−π^3  Σ_(k=n) ^(2n)  (1/k^3 )  ≤Σ_(k=n) ^(2n)  sin((π/k))≤πΣ_(k=n) ^(2n)  (1/k)  π Σ_(p=0) ^n  (1/(p+n))−π^(3 ) Σ_(p=0) ^n  (1/((p+n)^3 ))  ≤Σ_(k=n) ^(2n)  sin((π/k))≤πΣ_(p=0) ^n  (1/(p+n))  we haveΣ_(p=0) ^n  (1/(p+n))  (1/n)+(1/(n+1))+....+(1/(2n))  1+(1/n)+....+(1/(n−1))+....+(1/(2n))  −H_(n−1) =H_(2n) −H_(n−1)   =ln(2n)+γ +0((1/(2n)))−ln(n−1)  −γ−o((1/(n−1)))→ln2  its clear  that Σ_(p=0) ^n  (1/((p+n)^3 ))→0  because Σ)...)≤Σ_0 ^n  (1/n^3 )=((n+1)/n^3 )  ⇒lim_(n→+∞) Σ_(k=n) ^(2n)  sin((k/n))=πln2
An=p=knp=0nsin(πp+n)wehavexx36sinxxπkπ36k3sin(πk)πkk=n2nπkπ3k=n2n1k3k=n2nsin(πk)πk=n2n1kπp=0n1p+nπ3p=0n1(p+n)3k=n2nsin(πk)πp=0n1p+nwehavep=0n1p+n1n+1n+1+.+12n1+1n+.+1n1+.+12nHn1=H2nHn1=ln(2n)+γ+0(12n)ln(n1)γo(1n1)ln2itsclearthatp=0n1(p+n)30becauseΣ))0n1n3=n+1n3limn+k=n2nsin(kn)=πln2
Commented by Coronavirus last updated on 26/Jun/20
Thanks you Mr
Commented by DGmichael last updated on 26/Jun/20
������
Commented by mathmax by abdo last updated on 26/Jun/20
you are welcome sir
youarewelcomesir
Commented by Ar Brandon last updated on 26/Jun/20
Qui a compris ? ����
Commented by Ar Brandon last updated on 26/Jun/20
Sir is H_n  a special function ?
SirisHnaspecialfunction?
Commented by mathmax by abdo last updated on 26/Jun/20
H_n =1+(1/2)+(1/3) +...+(1/n) is harmonic sequence
Hn=1+12+13++1nisharmonicsequence
Commented by Ar Brandon last updated on 27/Jun/20
OK thank you Sir

Leave a Reply

Your email address will not be published. Required fields are marked *