Question Number 93633 by abdomathmax last updated on 14/May/20
$${calvulate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left(\pi{x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 15/May/20
$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\pi{x}\right)}{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx}\:\Rightarrow\mathrm{2}{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\pi{x}\right)}{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{i}\pi{x}} }{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx}\right) \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{{e}^{{i}\pi{z}} }{{z}^{\mathrm{4}} \:+\mathrm{1}}\:\:\:\:{poles}\:{of}\:\varphi? \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{i}\pi{z}} }{\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)}\:=\frac{{e}^{{i}\pi{z}} }{\left({z}−\sqrt{{i}}\right)\left({z}+\sqrt{{i}}\right)\left({z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)} \\ $$$$=\frac{{e}^{{i}\pi{z}} }{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{{e}^{{i}\pi\left({e}^{\frac{{i}\pi}{\mathrm{4}}} \right)} }{\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{2}{i}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:×{e}^{{i}\pi\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:×{e}^{−\frac{\pi}{\:\sqrt{\mathrm{2}}}} ×{e}^{\frac{{i}\pi}{\:\sqrt{\mathrm{2}}}} \:=\frac{{e}^{−\frac{\pi}{\:\sqrt{\mathrm{2}}}} }{\mathrm{4}{i}}\:{e}^{{i}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)} \\ $$$${Res}\left(\varphi,−{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\:=\:\frac{{e}^{{i}\pi\:\left(−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)} }{−\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \left(−\mathrm{2}{i}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−{i}\pi\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \:×{e}^{\frac{\pi}{\:\sqrt{\mathrm{2}}}} \:{e}^{−\frac{{i}\pi}{\:\sqrt{\mathrm{2}}}} \:\:=\frac{{e}^{\frac{\pi}{\:\sqrt{\mathrm{2}}}} }{\mathrm{4}{i}}\:\:×{e}^{{i}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)} \:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\frac{\pi}{\mathrm{2}}\left\{\:\:{e}^{−\frac{\pi}{\mathrm{2}}} \:×{e}^{{i}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)} \:+{e}^{\frac{\pi}{\mathrm{2}}} \:×\:{e}^{{i}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)} \right\} \\ $$$$=\frac{\pi{e}^{−\frac{\pi}{\mathrm{2}}} }{\mathrm{2}}\left(\:{cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)+{isin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)\right)+\frac{\pi{e}^{\frac{\pi}{\mathrm{2}}} }{\mathrm{2}}\left({cos}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{isin}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\right) \\ $$$$=\left(\frac{\pi}{\mathrm{2}}{e}^{−\frac{\pi}{\mathrm{2}}} \:\:\:+\frac{\pi}{\mathrm{2}}{e}^{\frac{\pi}{\mathrm{2}}} \right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)\:+{i}\left(…..\right)\:\Rightarrow \\ $$$$\mathrm{2}{A}\:=\pi\:{ch}\left(\frac{\pi}{\mathrm{2}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow\:{A}\:=\frac{\pi}{\mathrm{2}}{ch}\left(\frac{\pi}{\mathrm{2}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\mathrm{4}}\right) \\ $$