Menu Close

calvulste-A-n-0-n-t-2-1-t-1-3-dt-and-lim-n-A-n-




Question Number 43938 by abdo.msup.com last updated on 18/Sep/18
calvulste A_n =∫_0 ^n  t^2 [(1/((t+1)^3 ))]dt  and lim_(n→+∞)  A_n
calvulsteAn=0nt2[1(t+1)3]dtandlimn+An
Commented by maxmathsup by imad last updated on 20/Sep/18
changement (1/((t+1)^3 )) =x give (t+1)^3 =(1/x) ⇒t+1 = x^(−(1/3))  ⇒  A_n  = ∫_0 ^n (x^(−(1/3)) −1)^2 [x] (−(1/3)) x^(−(4/3)) dx  =−(1/3) ∫_0 ^n  (x^(−(2/3))  −2x^(−(1/3))  +1)x^(−(4/3)) [x] dx  =−(1/3) ∫_0 ^n  {x^(−2)  −2x^(−(5/3))  +x^(−(4/3)) }[x]dx ⇒  −3A_n =Σ_(k=0) ^(n−1)   ∫_k ^(k+1)   (k x^(−2) dx −2k x^(−(5/3))  +k x^(−(4/3)) )dx  =Σ_(k=0) ^(n−1)  k  ∫_k ^(k+1)  x^(−2) dx −2 Σ_(k=0) ^(n−1)  k ∫_k ^(k+1)  x^(−(5/3)) dx  +Σ_(k=0) ^(n−1)  k ∫_k ^(k+1)  x^(−(4/3))  dx  =Σ_(k=0) ^(n−1)  k [−(1/x)]_k ^(k+1) −2 Σ_(k=0) ^(n−1)  k [(1/(−(5/3)+1))x^(−(5/3)+1) ]_k ^(k+1)   +Σ_(k=0) ^(n−1)  k [ (1/(−(4/3)+1)) x^(−(4/3)+1) ]_k ^(k+1)   =Σ_(k=0) ^(n−1)  k{ (1/k)−(1/(k+1))} +3 Σ_(k=0) ^(n−1) k{ (k+1)^(−(2/3))  −k^(−(2/3)) }     −3Σ_(k=0) ^(n−1)  k { (k+1)^(−(1/3))  −k^(−(1/3)) }  = Σ_(k=0) ^(n−1)    (1/(k+1)) +3 { Σ_(k=0) ^(n−1)    (k/((k+1)^(2/3) )) −Σ_(k=0) ^(n−1)     (k/k^(2/3) )}  −3 { Σ_(k=0) ^(n−1)    (k/((k+1)^(1/3) )) −Σ_(k=0) ^(n−1)    (k/k^(1/3) )} ⇒  A_n =Σ_(k=1) ^n  (1/k)  +3 { Σ_(k=0) ^(n−1)    (k/((k+1)^(2/3) )) −Σ_(k=0) ^(n−1)  k^(1/3) }  −3 { Σ_(k=0) ^(n−1)     (k/((k+1)^(1/3) )) −Σ_(k=0) ^(n−1)   k^(2/3)  } .
changement1(t+1)3=xgive(t+1)3=1xt+1=x13An=0n(x131)2[x](13)x43dx=130n(x232x13+1)x43[x]dx=130n{x22x53+x43}[x]dx3An=k=0n1kk+1(kx2dx2kx53+kx43)dx=k=0n1kkk+1x2dx2k=0n1kkk+1x53dx+k=0n1kkk+1x43dx=k=0n1k[1x]kk+12k=0n1k[153+1x53+1]kk+1+k=0n1k[143+1x43+1]kk+1=k=0n1k{1k1k+1}+3k=0n1k{(k+1)23k23}3k=0n1k{(k+1)13k13}=k=0n11k+1+3{k=0n1k(k+1)23k=0n1kk23}3{k=0n1k(k+1)13k=0n1kk13}An=k=1n1k+3{k=0n1k(k+1)23k=0n1k13}3{k=0n1k(k+1)13k=0n1k23}.

Leave a Reply

Your email address will not be published. Required fields are marked *