Menu Close

Can-anyone-find-any-error-in-my-attempt-to-improve-upon-the-Cardano-s-cubic-formula-or-as-an-alternate-to-the-trigonometric-solution-here-it-goes-X-3-pX-q-0-let-X-p-x-and-with




Question Number 128007 by ajfour last updated on 03/Jan/21
Can anyone find any error in  my attempt to improve upon  the Cardano′s cubic formula..  or as an alternate to the  trigonometric solution...  here it goes:      X^3 −pX−q=0  let  (X/( (√p))) = x ;  and with (q/(p(√p))) = c ,      x^3 −x−c=0  let  x=(k+1)(p+q)             =(p+kq) + (kp+q)      p^3 +k^3 q^3 +3kpq(p+kq)+      k^3 p^3 +q^3 +3kpq(kp+q)       −(p+kq)−(kp+q)=c  ⇒     (1+k^3 )(p^3 +q^3 )+     (p+kq)(3kpq−1)+     (kp+q)(3kpq−1)= c  let   3kpq=1   ⇒     p^3 +q^3 =(c/(1+k^3 ))  &   p^3 q^3 =(1/(27k^3 ))   ;  hence     p^3 , q^3   =     (c/(2(1+k^3 )))±(√((c^2 /(4(1+k^3 )^2 ))−(1/(27k^3 ))))  lets choose upon a value of k  such that D=0  ⇒  4(1+k^3 )^2 =27c^2 k^3    .....(I)    (just a quadratic..)  first for   c^2 >(8/(27))  we  always can  get two real k values, and even  p=q then.    x=(k+1)(p+q)      = 2(k+1)p    x=2(k+1)[(c/(2(1+k^3 )))]^(1/3)   but simply  pq=(1/(3k))   hence   x=2(k+1)p = ((2(k+1))/( (√(3k))))  .  ________________________  even for  c=1  i dint get a  correct answer,  please help  error-freeing it. (Thanks!)
CananyonefindanyerrorinmyattempttoimproveupontheCardanoscubicformula..orasanalternatetothetrigonometricsolutionhereitgoes:X3pXq=0letXp=x;andwithqpp=c,x3xc=0letx=(k+1)(p+q)=(p+kq)+(kp+q)p3+k3q3+3kpq(p+kq)+k3p3+q3+3kpq(kp+q)(p+kq)(kp+q)=c(1+k3)(p3+q3)+(p+kq)(3kpq1)+(kp+q)(3kpq1)=clet3kpq=1p3+q3=c1+k3&p3q3=127k3;hencep3,q3=c2(1+k3)±c24(1+k3)2127k3letschooseuponavalueofksuchthatD=04(1+k3)2=27c2k3..(I)(justaquadratic..)firstforc2>827wealwayscangettworealkvalues,andevenp=qthen.x=(k+1)(p+q)=2(k+1)px=2(k+1)[c2(1+k3)]1/3butsimplypq=13khencex=2(k+1)p=2(k+1)3k.________________________evenforc=1idintgetacorrectanswer,pleasehelperrorfreeingit.(Thanks!)
Commented by MJS_new last updated on 04/Jan/21
after substituting x=(k+1)(p+q) I don′t get  your next equation.    p, q are given ⇒ from the moment you set  3kpq=1 also k is given ⇒ x is given
aftersubstitutingx=(k+1)(p+q)Idontgetyournextequation.p,qaregivenfromthemomentyouset3kpq=1alsokisgivenxisgiven
Commented by ajfour last updated on 04/Jan/21
because we put    3kpq=1  and use the equation, so we get  p^3 +q^3 =(c/(2(1+k^3 )))  ⇒  if we give a value to k then  x=(1+k)(p+q)   is obtained  in accordance with the eq.    x^3 =x+c  ■
becauseweput3kpq=1andusetheequation,sowegetp3+q3=c2(1+k3)ifwegiveavaluetokthenx=(1+k)(p+q)isobtainedinaccordancewiththeeq.x3=x+c◼

Leave a Reply

Your email address will not be published. Required fields are marked *