Menu Close

can-I-write-the-solution-of-ay-by-cy-0-y-c-1-e-b-b-2-4ac-2-x-c-2-e-b-b-2-4ac-2-x-when-b-2-4ac-0-c-1-e-b-2-x-c-2-xe-b-2-x-when-b-2-4ac-0-in-on




Question Number 95447 by Tony Lin last updated on 25/May/20
can I write the solution of  ay′′+by′+cy=0  y= { ((c_1 e^(((−b+(√(b^2 −4ac)))/2)x) +c_2 e^(((−b−(√(b^2 −4ac)))/2)x) ,when b^2 −4ac≠0)),((c_1 e^(((−b)/2)x) +c_2 xe^(((−b)/2)x) ,when b^2 −4ac=0)) :}  in one sentence  not in the form of piecewide-define function
canIwritethesolutionofay+by+cy=0y={c1eb+b24ac2x+c2ebb24ac2x,whenb24ac0c1eb2x+c2xeb2x,whenb24ac=0inonesentencenotintheformofpiecewidedefinefunction
Answered by mathmax by abdo last updated on 25/May/20
the caracteristic equation is ar^2  +br +c =0  Δ =b^2 −4ac   case 1 →b^2 −4ac >0 ⇒r_1 =((−b+(√(b^2 −4ac)))/(2a))  and r_2 =((−b−(√(b^2 −4ax)))/(2a)) ⇒the solution is y(x)=α e^(r_1 x)  +β e^(r_2 x)   case 2→b^2 −4ac<0 ⇒r_1 =((−b+i(√(4ac−b^2 )))/(2a)) and r_2 =((−b−i(√(4ac−b^2 )))/(2a))  ⇒y(x) =c_1  e^(r_1 x)  +c_2 e^(r_2 x)     case 3→b^2 −4ac =0 ⇒one roots r =((−b)/(2a)) ⇒  y(x) =(ax+b)e^(rx)
thecaracteristicequationisar2+br+c=0Δ=b24accase1b24ac>0r1=b+b24ac2aandr2=bb24ax2athesolutionisy(x)=αer1x+βer2xcase2b24ac<0r1=b+i4acb22aandr2=bi4acb22ay(x)=c1er1x+c2er2xcase3b24ac=0onerootsr=b2ay(x)=(ax+b)erx

Leave a Reply

Your email address will not be published. Required fields are marked *