Menu Close

can-the-directrix-of-a-parabola-be-in-the-form-y-mx-b-or-is-there-an-inclined-parabola-with-directrix-and-axis-of-symmetry-in-the-form-of-y-mx-b-




Question Number 48121 by JDlix last updated on 19/Nov/18
can the directrix of a parabola be in the form y=mx+b  ?  or is there an inclined parabola with directrix and axis   of symmetry in the form of y=mx+b  ??
canthedirectrixofaparabolabeintheformy=mx+b?oristhereaninclinedparabolawithdirectrixandaxisofsymmetryintheformofy=mx+b??
Commented by MJS last updated on 19/Nov/18
you can rotate a parabola, so this is indeed  possible
youcanrotateaparabola,sothisisindeedpossible
Commented by JDlix last updated on 19/Nov/18
can i have example ?
canihaveexample?
Commented by MJS last updated on 20/Nov/18
y=(√3)x+((13(√3))/8)±2(√(2x+4))  is a parabola with axis y=(√3)x+((5(√3))/8)  its equation is  192x^2 −128(√3)xy+64y^2 +112x−208(√3)y−517=0  the angle of the rotation: tan 2α =(B/(A−C)) ⇒  ⇒ α=−30°  x=x′cos α −y′sin α =((√3)/2)x′+(1/2)y′  y=x′sin α +y′cos α =−(1/2)x′+((√3)/2)y′  ⇒ new equation is  256x^2 +160(√3)x−256y−517=0  y=x^2 +((5(√3))/8)x−((517)/(256))  y=(x+((5(√3))/(16)))^2 −((37)/(16))  ⇒ parabola y=x^2  had been shifted ((5(√3))/(16)) to the  left and ((37)/(16)) down and rotated by −30°
y=3x+1338±22x+4isaparabolawithaxisy=3x+538itsequationis192x21283xy+64y2+112x2083y517=0theangleoftherotation:tan2α=BACα=30°x=xcosαysinα=32x+12yy=xsinα+ycosα=12x+32ynewequationis256x2+1603x256y517=0y=x2+538x517256y=(x+5316)23716parabolay=x2hadbeenshifted5316totheleftand3716downandrotatedby30°

Leave a Reply

Your email address will not be published. Required fields are marked *