Menu Close

Can-We-expand-the-following-expression-1-x-1-2x-1-3x-1-nx-or-is-there-any-formula-for-this-




Question Number 30267 by Nayon.Sm last updated on 19/Feb/18
Can We expand the following  expression?  (1+x)(1+2x)(1+3x)......(1+nx)  or is there any formula for this?
CanWeexpandthefollowingexpression?(1+x)(1+2x)(1+3x)(1+nx)oristhereanyformulaforthis?
Commented by Penguin last updated on 19/Feb/18
f(x)=Π_(k=1) ^n (1+kx)  =(1+x)(1+2x)(1+3x)...(1+nx)  =x^n (1+(1/x))...(n+(1/x))  =x^n (1+(1/x))_n      (x)_n ≡((Γ(x+n))/(Γ(x)))=x(x+1)...(x+n−1)     ∴f(x)=x^n Γ((1/x)+n)Γ(x)^(−1)
f(x)=nk=1(1+kx)=(1+x)(1+2x)(1+3x)(1+nx)=xn(1+1x)(n+1x)=xn(1+1x)n(x)nΓ(x+n)Γ(x)=x(x+1)(x+n1)f(x)=xnΓ(1x+n)Γ(x)1
Commented by Nayon.Sm last updated on 19/Feb/18
its not
itsnot
Commented by Penguin last updated on 19/Feb/18
Why?
Why?
Commented by Nayon.Sm last updated on 19/Feb/18
what isΓ(x)?^   what is
whatisΓ(x)?whatis
Commented by Penguin last updated on 19/Feb/18
Gamma function  Γ(x)=(x−1)!=(x−1)×(x−2)×...×3×2×1
GammafunctionΓ(x)=(x1)!=(x1)×(x2)××3×2×1
Commented by abdo imad last updated on 20/Feb/18
Γ(x) is the euler function defined by  Γ(x)=∫_0 ^∞  t^(x−1) e^(−t) dt  for x>0 .
Γ(x)istheeulerfunctiondefinedbyΓ(x)=0tx1etdtforx>0.
Commented by Nayon.Sm last updated on 10/Mar/18
Yes

Leave a Reply

Your email address will not be published. Required fields are marked *