Menu Close

Can-we-show-a-b-lt-a-2-ab-b-2-a-b-N-




Question Number 182379 by Rasheed.Sindhi last updated on 08/Dec/22
Can we show a+b<a^2 −ab+b^2   ∀ a,b∈N
Canweshowa+b<a2ab+b2a,bN
Commented by Frix last updated on 08/Dec/22
Check it for a∈{0, 1, 2}
Checkitfora{0,1,2}
Answered by mr W last updated on 08/Dec/22
for a,b>2 we can prove.  if a=b:  a^2 −ab+b^2 =a^2 >2a=a+b ✓  if a≠b, say a>b:  a^2 −ab+b^2 =a(a−b)+b^2 ≥a+b^2 >a+b ✓
fora,b>2wecanprove.ifa=b:a2ab+b2=a2>2a=a+bifab,saya>b:a2ab+b2=a(ab)+b2a+b2>a+b
Commented by Rasheed.Sindhi last updated on 09/Dec/22
ThanX Sir!
ThanXSir!
Answered by manxsol last updated on 09/Dec/22
analisis  a=b⇒a^2 −a.a+a^2 ⟩a+a                a^2 ⟩2a⇒a(a−2)⟩0          aε⟨−∝,0⟩∪⟨2,0⟩  a⟩2  if a≠b  and a⟩b  propertie    :  a+b⟩2(√(ab))             a^3 +b^3  ⟩2(√(a^3 b^3 ))        a^3 +b^3 ⟩2ab(√(ab))     I  (a+b)^2 ⟩2ab⟩2(√(ab))     II  I/II      ((a^3 +b^3 )/((a+b)^2 ))  ⟩ ((2ab(√(ab)))/( 2(√(ab))))       a^3 +b^3 ⟩(a+b)^2 ab  a^2 −ab+b^2 ⟩(a+b)ab⟩  a+b  a^2 −ab+b^2 ⟩ a+b
analisisa=ba2a.a+a2a+aa22aa(a2)0aϵ,02,0a2ifabandabpropertie:a+b2aba3+b32a3b3a3+b32ababI(a+b)22ab2abIII/IIa3+b3(a+b)22abab2aba3+b3(a+b)2aba2ab+b2(a+b)aba+ba2ab+b2a+b
Commented by manxsol last updated on 09/Dec/22
Error,I am missing the   analysis that you did.  Thank Sir W.
Error,Iammissingtheanalysisthatyoudid.ThankSirW.
Commented by Rasheed.Sindhi last updated on 09/Dec/22
ThanX Sir!
ThanXSir!

Leave a Reply

Your email address will not be published. Required fields are marked *