Menu Close

Can-you-factor-x-2-x-1-0-




Question Number 171216 by Bagus1003 last updated on 10/Jun/22
Can you factor :  x^2 −x−1=0
$${Can}\:{you}\:{factor}\:: \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$
Commented by MJS_new last updated on 10/Jun/22
just use the formula  x^2 +px+q=0 ⇒ x_(1, 2) =−(p/2)±(√((p^2 /4)−q))  ⇒  x^2 +px+q=(x−x_1 )(x−x_2 )
$$\mathrm{just}\:\mathrm{use}\:\mathrm{the}\:\mathrm{formula} \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\mathrm{0}\:\Rightarrow\:{x}_{\mathrm{1},\:\mathrm{2}} =−\frac{{p}}{\mathrm{2}}\pm\sqrt{\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{2}} +{px}+{q}=\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right) \\ $$
Answered by aleks041103 last updated on 10/Jun/22
x_(1,2) =((1±(√(1+4)))/2)=((1+(√5))/2),((1−(√5))/2)=ϕ,−(ϕ−1)  ⇒x^2 −x−1=(x−ϕ)(x+ϕ−1)
$${x}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}},\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}=\varphi,−\left(\varphi−\mathrm{1}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{1}=\left({x}−\varphi\right)\left({x}+\varphi−\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *