Menu Close

caoculate-0-t-dt-1-t-4-2-




Question Number 40155 by maxmathsup by imad last updated on 16/Jul/18
caoculate  ∫_0 ^∞     ((t dt)/((1+t^4 )^2 ))
caoculate0tdt(1+t4)2
Commented by maxmathsup by imad last updated on 16/Jul/18
Residus method  changement t^2 = x   give    I  = (1/2)∫_0 ^∞    ((2t)/((1+t^4 )^2 ))dt =(1/2) ∫_0 ^∞    (dx/((1+x^2 )^2 )) =(1/4) ∫_(−∞) ^(+∞)     (dx/((1+x^2 )^2 ))  let ϕ(z) = (1/((z^2  +1)^2 ))  we have ϕ(z) = (1/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) { (z−i)^2 ϕ(z)}^((1))   =lim_(z→i) {(z+i)^(−2) }^((1)) =lim_(z→i)    −2(z+i)^(−3) =−2(2i)^(−3)  = ((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i))  I = (1/4) (2iπ)(1/(4i)) ⇒ I =(π/8) .
Residusmethodchangementt2=xgiveI=1202t(1+t4)2dt=120dx(1+x2)2=14+dx(1+x2)2letφ(z)=1(z2+1)2wehaveφ(z)=1(zi)2(z+i)2+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi{(zi)2φ(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=2(2i)3=2(2i)3=28i=14iI=14(2iπ)14iI=π8.
Answered by ajfour last updated on 16/Jul/18
I=(1/2)∫_0 ^(  ∞) (dz/((1+z^2 )^2 ))     where z=t^2      let  z=tan θ   ⇒  dz=sec^2 θdθ    I=(1/4)∫_0 ^(  π/2) (1+cos 2θ)dθ      =(π/8) .
I=120dz(1+z2)2wherez=t2letz=tanθdz=sec2θdθI=140π/2(1+cos2θ)dθ=π8.

Leave a Reply

Your email address will not be published. Required fields are marked *