Menu Close

center-and-radius-convergence-of-series-n-0-4-2i-1-5i-n-z-n-is-




Question Number 55174 by gunawan last updated on 18/Feb/19
center and radius convergence   of series Σ_(n=0) ^(∝)  (((4−2i)/(1+5i)))^n z^n  is...
$$\mathrm{center}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{convergence} \\ $$$$\:\mathrm{of}\:\mathrm{series}\:\underset{{n}=\mathrm{0}} {\overset{\propto} {\Sigma}}\:\left(\frac{\mathrm{4}−\mathrm{2}{i}}{\mathrm{1}+\mathrm{5}{i}}\right)^{{n}} {z}^{{n}} \:\mathrm{is}… \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 19/Feb/19
let u_n (z)=(((4−2i)/(1+5i)))^n  z^n    for z≠0  ∣((u_(n+1) (z))/(u_n (z)))∣ =∣((4−2i)/(1+5i))∣∣z∣=((√(16+4))/( (√(1+25)))) ∣z∣  =(√((20)/(26)))∣z∣ =(√((10)/(13)))∣z∣  if (√((10)/(13)))∣z∣<1   ⇔∣z∣<(√((13)/(10)))the serie converges  if (√((10)/(13)))∣z∣>1 ⇔∣z∣>(√((13)/(10)))  the serie diverges  radius is R=(√((13)/(10)))
$${let}\:{u}_{{n}} \left({z}\right)=\left(\frac{\mathrm{4}−\mathrm{2}{i}}{\mathrm{1}+\mathrm{5}{i}}\right)^{{n}} \:{z}^{{n}} \:\:\:{for}\:{z}\neq\mathrm{0} \\ $$$$\mid\frac{{u}_{{n}+\mathrm{1}} \left({z}\right)}{{u}_{{n}} \left({z}\right)}\mid\:=\mid\frac{\mathrm{4}−\mathrm{2}{i}}{\mathrm{1}+\mathrm{5}{i}}\mid\mid{z}\mid=\frac{\sqrt{\mathrm{16}+\mathrm{4}}}{\:\sqrt{\mathrm{1}+\mathrm{25}}}\:\mid{z}\mid \\ $$$$=\sqrt{\frac{\mathrm{20}}{\mathrm{26}}}\mid{z}\mid\:=\sqrt{\frac{\mathrm{10}}{\mathrm{13}}}\mid{z}\mid \\ $$$${if}\:\sqrt{\frac{\mathrm{10}}{\mathrm{13}}}\mid{z}\mid<\mathrm{1}\:\:\:\Leftrightarrow\mid{z}\mid<\sqrt{\frac{\mathrm{13}}{\mathrm{10}}}{the}\:{serie}\:{converges} \\ $$$${if}\:\sqrt{\frac{\mathrm{10}}{\mathrm{13}}}\mid{z}\mid>\mathrm{1}\:\Leftrightarrow\mid{z}\mid>\sqrt{\frac{\mathrm{13}}{\mathrm{10}}}\:\:{the}\:{serie}\:{diverges} \\ $$$${radius}\:{is}\:{R}=\sqrt{\frac{\mathrm{13}}{\mathrm{10}}} \\ $$
Commented by gunawan last updated on 19/Feb/19
wow  thanks Sir
$$\mathrm{wow} \\ $$$$\mathrm{thanks}\:\mathrm{Sir} \\ $$
Commented by maxmathsup by imad last updated on 19/Feb/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *