Menu Close

challanging-integral-prove-that-0-cos-x-1-1-x-2-dx-x-




Question Number 127446 by mnjuly1970 last updated on 29/Dec/20
          ...challanging  integral...        prove  that ::       Ω=∫_0 ^( ∞) (cos(x)−(1/(1+x^2  )))(dx/x) = −γ
challangingintegralprovethat::Ω=0(cos(x)11+x2)dxx=γ
Answered by mindispower last updated on 31/Dec/20
Ci(x)=−∫_x ^∞ ((cos(t))/t)dt=γ+ln(x)−∫_0 ^x ((1−cos(t))/t)dt   Ω=lim_(t→0) ∫_t ^∞ (cos(x)−(1/(1+x^2 ))).(dx/x)  =lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx−∫_t ^∞ (dx/(x(1+x^2 ))))  =lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx−B)  B=∫_t ^∞ (1/(x(1+x^2 )))=((1+x^2 −x.x)/(x(1+x^2 )))=∫_t ^∞ (1/x)−(x/(1+x^2 ))dx  =[ln(x)−((ln(1+x^2 ))/2)]_t ^∞ =−ln(t)+((ln(1+t^2 ))/2)  Ω=lim_(t→0) (−γ−ln(t)+∫_0 ^t ((1−cos(x))/x)dx+ln(t)−((ln(1+t^2 ))/2))  Ω=lim_(t→0) (−γ+∫_0 ^t ((1−cos(x))/x)dx)  lim_(t→0) ∫_0 ^t ((1−cos(x))/x)dx=0  ((1−cos(x))/x)=g(x)  0≤((1−cos(x))/x)  _(x∈[0,t]) =Σ_(k≥1) (((−1)^(k+1) )/((2k!)))x^(2k−1) ≤(x/2)  ⇒0≤∫_0 ^t ((1−cos(x))/x)dx≤(t^2 /4)→0  Ω=lim_(t→0) (−γ+∫_0 ^t ((1−cos(x))/x)dx)=−γ+0=−γ  Ω=−γ
Ci(x)=xcos(t)tdt=γ+ln(x)0x1cos(t)tdtΩ=limt0t(cos(x)11+x2).dxx=limt0(γln(t)+0t1cos(x)xdxtdxx(1+x2))=limt0(γln(t)+0t1cos(x)xdxB)B=t1x(1+x2)=1+x2x.xx(1+x2)=t1xx1+x2dx=[ln(x)ln(1+x2)2]t=ln(t)+ln(1+t2)2Ω=limt0(γln(t)+0t1cos(x)xdx+ln(t)ln(1+t2)2)Ω=limt0(γ+0t1cos(x)xdx)limt00t1cos(x)xdx=01cos(x)x=g(x)01cos(x)xx[0,t]=k1(1)k+1(2k!)x2k1x200t1cos(x)xdxt240Ω=limt0(γ+0t1cos(x)xdx)=γ+0=γΩ=γ
Commented by mnjuly1970 last updated on 31/Dec/20
very nice .thanks alot..
verynice.thanksalot..
Commented by mindispower last updated on 31/Dec/20
pleasur sir happy new years all good things for  you
pleasursirhappynewyearsallgoodthingsforyou

Leave a Reply

Your email address will not be published. Required fields are marked *