Menu Close

challanging-math-prove-that-n-2-1-n-n-2-n-1-n-ln-pi-4-hint-s-1-s-0-x-s-1-e-x-1-dx-m-n-




Question Number 122185 by mnjuly1970 last updated on 14/Nov/20
      ... challanging  math...     prove  that ::  Σ_(n=2) ^∞ (((−1)^n ζ(n))/(2^(n−1) n))=^(???) γ +ln((π/4))     hint :: ζ(s)=(1/(Γ(s)))∫_0 ^( ∞) (x^(s−1) /(e^x −1))dx         m.n...
challangingmathprovethat::n=2(1)nζ(n)2n1n=???γ+ln(π4)hint::ζ(s)=1Γ(s)0xs1ex1dxm.n
Commented by Dwaipayan Shikari last updated on 15/Nov/20
Σ_(n=2) ^∞ (((−1)^n ζ(n))/(2^(n−1) n))  Σ_(n=2) ^∞ (((−1)^n )/(2^(n−1) n))Σ_(s=1) ^∞ (1/s^n )  2Σ_(n=2) ^∞ Σ_(s=1) ^∞ (((−1)^n )/((2s)^n n))  2Σ_(s=1) ^∞ (((((−1)/(2s)))^n )/n)=2Σ_(s=1) ^∞ log(1+(1/(2s)))+(1/(2s))  Σ_(s=1) ^∞ (1/s)+2Σ^∞ log(1+(1/(2s)))  log(Γ((1/2)))=−(γ/2)+log2+Σ^∞ (1/(2s))+Σ^∞ log(1+(1/(2s)))  log(π)=−γ+log4+Σ^∞ (1/s)+2Σ^∞ log(1+(1/(2s)))  Σ^∞ (1/s)+2Σ^∞ log(1+(1/(2s)))=γ+log((π/4))
n=2(1)nζ(n)2n1nn=2(1)n2n1ns=11sn2n=2s=1(1)n(2s)nn2s=1(12s)nn=2s=1log(1+12s)+12ss=11s+2log(1+12s)log(Γ(12))=γ2+log2+12s+log(1+12s)log(π)=γ+log4+1s+2log(1+12s)1s+2log(1+12s)=γ+log(π4)
Commented by mnjuly1970 last updated on 15/Nov/20
very nice .bravo    master  dwaipayan..
verynice.bravomasterdwaipayan..
Answered by mindispower last updated on 15/Nov/20
Σ_(n≥2) (((−1)^n x^n ζ(n))/n)  =Σ_(n≥2) (((−x)^n )/n).Σ_(k≥1) (1/k^n )  =Σ_(k≥1) Σ_(n≥2) (((−(x/k))^n )/n)=S(x)  =Σ_(k≥1) −(ln(1+(x/k))−(x/k))=S(x)  Γ(x)=(e^(−γx) /x)Π_(k≥1) (e^(x/k) /(1+(x/k)))⇒  log(Γ(z))−γx−ln(x)+ Σ_(k≥1) ((x/k)−ln(1+(x/k)))  ⇒S(x)=log(Γ(x))+γx+ln(x)  =S(x)=log(xΓ(x))+γx=log(Γ(x+1))+γx  Σ(((−1)^n ζ(n))/(2^(n−1) n))=2Σ_(n≥2) (((−1)^n ((1/2))^n ζ(n))/n)=2S((1/2))  2(log(Γ((1/2))+(γ/2))=log(π/4)+γ  withe hint leads to  ∫_0 ^∞ (2/x)(e^(−(x/2)) −1+(x/2)).(dx/(e^x −1))
n2(1)nxnζ(n)n=n2(x)nn.k11kn=k1n2(xk)nn=S(x)=k1(ln(1+xk)xk)=S(x)Γ(x)=eγxxk1exk1+xklog(Γ(z))γxln(x)+k1(xkln(1+xk))S(x)=log(Γ(x))+γx+ln(x)=S(x)=log(xΓ(x))+γx=log(Γ(x+1))+γxΣ(1)nζ(n)2n1n=2n2(1)n(12)nζ(n)n=2S(12)2(log(Γ(12)+γ2)=logπ4+γwithehintleadsto02x(ex21+x2).dxex1
Commented by mnjuly1970 last updated on 15/Nov/20
peace be upon you sir   mindspower.really nice and  excellent.
peacebeuponyousirmindspower.reallyniceandexcellent.
Answered by mnjuly1970 last updated on 15/Nov/20
Answered by mnjuly1970 last updated on 15/Nov/20

Leave a Reply

Your email address will not be published. Required fields are marked *