Menu Close

Change-in-Q-27507-Solve-simultaneously-2-x-y-13-x-2-y-10-




Question Number 27559 by Rasheed.Sindhi last updated on 09/Jan/18
Change in Q#27507  Solve simultaneously:  2(√x)+y=13  x+2(√y)=10
You can't use 'macro parameter character #' in math modeSolvesimultaneously:2x+y=13x+2y=10
Commented by Rasheed.Sindhi last updated on 09/Jan/18
x=4,y=9 is solution   Method of solving is required.
x=4,y=9issolutionMethodofsolvingisrequired.
Answered by Amstrongmazoka last updated on 09/Jan/18
From equation (1) y=13−2(√x)  ⇒ substituting for y in equation(2), gives,  x+2(√((13−2(√x))))=10    ∴ (√((13−2(√x))))=5−(x/2)  Now squaring above sides, gives  13−2(√x)=(5−(x/2))^2       ⇒13−2(√x)=25−5x+(x^2 /4)  ∴ −2(√x)=12−5x+(x^2 /4).   Again, squaring both sides gives  4x=144−120x+25x^2 +6x^2 −((5x^3 )/2)+(x^4 /(16)).   Grouping like terms gives  (x^4 /(16))−((5x^3 )/2)+31x^2 −124x+144=0. Multiplying through by 16 gives  x^4 −40x^3 +496x^2 −1984x+2304=0. This is a polynomial of degree 4 and it can be solved using factorisation or Newton′ method.  Let f(x)=x^4 −40x^3 +496x^2 −1984x+2304  ⇒f(4)=4^4 −40(4^3 )+496(4^2 )−1984(4)+2304=0  By the factor theorem since f(4)=0, ⇒(x−4) is a factor of f(x).  The other factors are found as follows:                 x^3  −36x^2  +352x−576  (x−4)(√(x^4 −40x^3 +496x^2 −1984x+2304))                −(x^4 −4x^3 )                         −36x^3 +496x^2                      −(−36x^3 +144x^2 )                                          352x^2 −1984x                                      −(352x^2 −1408x)                                                   −576x+2304                                         −(−576x+2304)                                                  −−−−−−−  ∴f(x)=(x−4)(x^3 −36x^2 +352x−576)⇒x=4,  x=2.0365,   x=19.337  But y=13−2(√x),⇒when x=4, y=13−2(√4)=9, when x=2.0365,  y=13−2(√(2.0365))=10.1459 and when x=19.337, y=13−2(√(19.337))=4.2052  thus (x=4, y=9),   (x=2.0365, y=10.1459)  and (x=19.337, y=4.2052)  are the possible pairs from which a solution can be found.  amount them, only the first pair satisfy the equations simultaneously.  ∴ x=4, y=9
Fromequation(1)y=132xsubstitutingforyinequation(2),gives,x+2(132x)=10(132x)=5x2Nowsquaringabovesides,gives132x=(5x2)2132x=255x+x242x=125x+x24.Again,squaringbothsidesgives4x=144120x+25x2+6x25x32+x416.Groupingliketermsgivesx4165x32+31x2124x+144=0.Multiplyingthroughby16givesx440x3+496x21984x+2304=0.Thisisapolynomialofdegree4anditcanbesolvedusingfactorisationorNewtonmethod.Letf(x)=x440x3+496x21984x+2304f(4)=4440(43)+496(42)1984(4)+2304=0Bythefactortheoremsincef(4)=0,(x4)isafactoroff(x).Theotherfactorsarefoundasfollows:x336x2+352x576(x4)x440x3+496x21984x+2304(x44x3)36x3+496x2(36x3+144x2)352x21984x(352x21408x)576x+2304(576x+2304)f(x)=(x4)(x336x2+352x576)x=4,x=2.0365,x=19.337Buty=132x,whenx=4,y=1324=9,whenx=2.0365,y=1322.0365=10.1459andwhenx=19.337,y=13219.337=4.2052thus(x=4,y=9),(x=2.0365,y=10.1459)and(x=19.337,y=4.2052)arethepossiblepairsfromwhichasolutioncanbefound.amountthem,onlythefirstpairsatisfytheequationssimultaneously.x=4,y=9
Commented by Rasheed.Sindhi last updated on 09/Jan/18
In finding factors trial method   is involved.  AnyWay ThanX-a-lot!
Infindingfactorstrialmethodisinvolved.AnyWayThanXalot!
Commented by Rasheed.Sindhi last updated on 09/Jan/18
What if we are only sure of  real roots?
Whatifweareonlysureofrealroots?
Answered by Rasheed.Sindhi last updated on 10/Jan/18
Trying to find solution in  whole numbers.  2(√x)+y=13........(i)  x+2(√y)=10........(ii)  (i)⇒(√x)=((13−y)/2)..........(iii)  (ii)⇒x=10−2(√y)             (√x)=(√(10−2(√y)))......(iv)  (iii) & (iv)⇒((13−y)/2)=(√(10−2(√y)))  (√(p−q(√c))) can be changed into  a+b(√c) form in some cases and  the process is as under.  Let (√(10−2(√y)))=a+b(√y)    a,b∈Q       ((√(10−2(√y))))^2 =(a+b(√y))^2    a^2 +b^2 y+2ab(√y)=10−2(√y)    By comparing the coefficients  of (√y) and the terms not containing  (√y) we′ll get:  a^2 +b^2 y=10   ∧ 2ab=−2                                   ab=−1                                    b=−1/a  a^2 +(−1/a)^2 y=10  a^4 −10a^2 +y=0  a^2 =((10±(√(100−4y)))/2)    ((10±(√(100−4y)))/2) is perfect square  rational number⇒100−4y is  perfect square rational number  and non-negative.  ∴ y=0,9,16,21  y=0⇒a=((10±10)/2)=(√(10))^(×) ,0  a≠0 because in that case b=−1/0=∞  y=9⇒a=((10±8)/2)=3,1  y=16⇒a=((10±6)/2)=(√8)^(×)  ,(√2)^(×)    y=21⇒a=((10±4)/2)=(√7)^(×)  ,(√3)^(×)   So y may be 9  and a=1,3  a=3,b=−1/3 & y=9 satisfy the  following   (√(10−2(√y)))=a+b(√y)   (√(10−2(√9)))=3−(1/3)(√9)      2=2  Hence y=9  Continue
Tryingtofindsolutioninwholenumbers.2x+y=13..(i)x+2y=10..(ii)(i)x=13y2.(iii)(ii)x=102yx=102y(iv)(iii)&(iv)13y2=102ypqccanbechangedintoa+bcforminsomecasesandtheprocessisasunder.Let102y=a+bya,bQ(102y)2=(a+by)2a2+b2y+2aby=102yBycomparingthecoefficientsofyandthetermsnotcontainingywellget:a2+b2y=102ab=2ab=1b=1/aa2+(1/a)2y=10a410a2+y=0a2=10±1004y210±1004y2isperfectsquarerationalnumber1004yisperfectsquarerationalnumberandnonnegative.y=0,9,16,21y=0a=10±102=10×,0a0becauseinthatcaseb=1/0=y=9a=10±82=3,1y=16a=10±62=8×,2×y=21a=10±42=7×,3×Soymaybe9anda=1,3a=3,b=1/3&y=9satisfythefollowing102y=a+by1029=31392=2Hencey=9Continue

Leave a Reply

Your email address will not be published. Required fields are marked *