Menu Close

change-in-simplest-form-tan-1-1-x-2-1-x-2-1-x-2-1-x-2-




Question Number 58500 by Kunal12588 last updated on 24/Apr/19
change in simplest form :  tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/( (√(1+x^2 ))−(√(1−x^2 ))))
changeinsimplestform:tan11+x2+1x21+x21x2
Answered by MJS last updated on 24/Apr/19
(((√a)+(√b))/( (√a)−(√b)))=((((√a)+(√b))^2 )/(((√a)−(√b))((√a)+(√b))))=((a+2(√(ab))+b)/(a−b))  ((1+x^2 +2(√((1+x^2 )(1−x^2 )))+1−x^2 )/(1+x^2 −(1−x^2 )))=  =((1+(√(1−x^4 )))/x^2 )  arctan ((1+(√(1−x^4 )))/x^2 ) =t  ⇒ x=±(√(sin 2t)) ⇒ t=((2nπ+arcsin x^2 )/2) ∨ t=(((2n+1)π−arcsin x^2 )/2)  testing values we get  arctan (((√(1+x^2 ))+(√(1−x^2 )))/( (√(1+x^2 ))−(√(1−x^2 )))) =((π−arcsin x^2 )/2)
a+bab=(a+b)2(ab)(a+b)=a+2ab+bab1+x2+2(1+x2)(1x2)+1x21+x2(1x2)==1+1x4x2arctan1+1x4x2=tx=±sin2tt=2nπ+arcsinx22t=(2n+1)πarcsinx22testingvalueswegetarctan1+x2+1x21+x21x2=πarcsinx22
Commented by Kunal12588 last updated on 24/Apr/19
thank you sir, I have also written an ans  pls check.
thankyousir,Ihavealsowrittenanansplscheck.
Answered by Kunal12588 last updated on 24/Apr/19
tan^(−1) (((√(1+x^2 ))+(√(1−x^2 )))/( (√(1+x^2 ))−(√(1−x^2 ))))  let x^2 =cos y  ⇒cos^(−1) x^2 =y  tan^(−1) (((√(1+cos y))+(√(1−cos y)))/( (√(1+cos y))−(√(1−cos y))))  =tan^(−1) (((√2)cos(y/2)+(√2)sin(y/2))/( (√2)cos(y/2)−(√2)sin(y/2)))  =tan^(−1) ((1+tan(y/2))/(1−tan(y/2)))  =tan^(−1) ((tan(π/4)+tan(y/2))/(1−tan(π/4)tan(y/2)))  =tan^(−1) (tan((π/4)+(y/2)))  =(π/4)+(y/2)  =(π/4)+(1/2)cos^(−1) x^2
tan11+x2+1x21+x21x2letx2=cosycos1x2=ytan11+cosy+1cosy1+cosy1cosy=tan12cosy2+2siny22cosy22siny2=tan11+tany21tany2=tan1tanπ4+tany21tanπ4tany2=tan1(tan(π4+y2))=π4+y2=π4+12cos1x2
Commented by MJS last updated on 24/Apr/19
good!  (π/4)+(1/2)arccos x^2  =(π/2)−(1/2)arcsin x^2
good!π4+12arccosx2=π212arcsinx2

Leave a Reply

Your email address will not be published. Required fields are marked *