Menu Close

Check-whether-Q-is-a-group-or-not-Hello-bosses-




Question Number 191937 by Mastermind last updated on 04/May/23
Check whether (Q, ∙) is a group or  not    Hello bosses!
$$\mathrm{Check}\:\mathrm{whether}\:\left(\mathrm{Q},\:\centerdot\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{group}\:\mathrm{or} \\ $$$$\mathrm{not} \\ $$$$ \\ $$$$\mathrm{Hello}\:\mathrm{bosses}! \\ $$
Answered by AST last updated on 04/May/23
Let a,b∈Q(Q=(x/y)) where a=(x_1 /y_1 ),b=(x_2 /y_2 )  a∙e=e.a=a  ⇒e=a∙a^(−1) =1  where a unique a^(−1) ∈Q  There does not exist a unique a^(−1) ∈Q for  a=0   such that a∙a^(−1) =1. Hence, Q cannot be a group.
$${Let}\:{a},{b}\in{Q}\left({Q}=\frac{{x}}{{y}}\right)\:{where}\:{a}=\frac{{x}_{\mathrm{1}} }{{y}_{\mathrm{1}} },{b}=\frac{{x}_{\mathrm{2}} }{{y}_{\mathrm{2}} } \\ $$$${a}\centerdot{e}={e}.{a}={a} \\ $$$$\Rightarrow{e}={a}\centerdot{a}^{−\mathrm{1}} =\mathrm{1} \\ $$$${where}\:{a}\:{unique}\:{a}^{−\mathrm{1}} \in{Q} \\ $$$${There}\:{does}\:{not}\:{exist}\:{a}\:{unique}\:{a}^{−\mathrm{1}} \in{Q}\:{for}\:\:{a}=\mathrm{0}\: \\ $$$${such}\:{that}\:{a}\centerdot{a}^{−\mathrm{1}} =\mathrm{1}.\:{Hence},\:{Q}\:{cannot}\:{be}\:{a}\:{group}. \\ $$
Commented by Mastermind last updated on 04/May/23
Thak you BOSS, i do really appreciate
$$\mathrm{Thak}\:\mathrm{you}\:\mathrm{BOSS},\:\mathrm{i}\:\mathrm{do}\:\mathrm{really}\:\mathrm{appreciate} \\ $$
Commented by AST last updated on 04/May/23
What level Maths is this in uni?
$${What}\:{level}\:{Maths}\:{is}\:{this}\:{in}\:{uni}? \\ $$
Commented by Mastermind last updated on 04/May/23
200l
$$\mathrm{200l} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *