Menu Close

clalculate-A-n-0-1-t-2n-1-t-n-dt-with-n-integr-natural-




Question Number 57236 by maxmathsup by imad last updated on 31/Mar/19
clalculate A_n = ∫_0 ^1  t^(2n) (1−t)^n dt   with n integr natural .
clalculateAn=01t2n(1t)ndtwithnintegrnatural.
Commented by maxmathsup by imad last updated on 04/Apr/19
let find A_(n,p)   =∫_0 ^1  t^n (1−t)^p dt  by parts u^′ =t^n  and v=(1−t)^p   A_(n,p)  =[(1/(n+1))t^(n+1) (1−t)^p ]_0 ^1  −∫_0 ^1  (1/(n+1))t^(n+1)  (−p)(1−t)^(p−1) dt  =(p/(n+1)) ∫_0 ^1  t^(n+1) (1−t)^(p−1)  =(p/(n+1)) A_(n+1,p−1)  ⇒  A_(n,p) =((p(p−1))/((n+1)(n+2))) A_(n+2,p−2) =((p(p−1)...(p−k+1))/((n+1)(n+2)....(n+k)))A_(n+k,p−k) .=_(k=p) ((p!)/((n+1)(n+2)....(n+p)))A_(n+p,o)   A_(n+p,0) =∫_0 ^1 t^(n+p) dt =(1/(n+p+1)) ⇒A_(n,p)  =((p!)/((n+1)(n+2)...(n+p+1))) ⇒  A_(n,p) =((p!)/((n+p+1)!)) ×n! =((n! .p!)/((n+p+1)!)) ⇒ A_n =A_(2n,n)  =(((2n)!(n!))/((3n+1)!))
letfindAn,p=01tn(1t)pdtbypartsu=tnandv=(1t)pAn,p=[1n+1tn+1(1t)p]01011n+1tn+1(p)(1t)p1dt=pn+101tn+1(1t)p1=pn+1An+1,p1An,p=p(p1)(n+1)(n+2)An+2,p2=p(p1)(pk+1)(n+1)(n+2).(n+k)An+k,pk.=k=pp!(n+1)(n+2).(n+p)An+p,oAn+p,0=01tn+pdt=1n+p+1An,p=p!(n+1)(n+2)(n+p+1)An,p=p!(n+p+1)!×n!=n!.p!(n+p+1)!An=A2n,n=(2n)!(n!)(3n+1)!
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19
∫_0 ^1 t^(2n+1−1) (1−t)^(n+1−1) =((⌈(2n+1)⌈(n+1))/(⌈(2n+1+n+1)))  beta function ∫_0 ^1 x^(m−1) (1−x)^(n−1) dx=((⌈(m)⌈n))/(⌈(m+n)))
01t2n+11(1t)n+11=(2n+1)(n+1)(2n+1+n+1)betafunction01xm1(1x)n1dx=(m)n)(m+n)
Commented by maxmathsup by imad last updated on 04/Apr/19
sir Tanmay look that Γ(2n+1)=(2n)!   ,Γ(n+1)=n! ,Γ(3n+2)=(3n+1)!  ⇒A_n =(((2n)!(n!))/((3n+1)!))  .
sirTanmaylookthatΓ(2n+1)=(2n)!,Γ(n+1)=n!,Γ(3n+2)=(3n+1)!An=(2n)!(n!)(3n+1)!.

Leave a Reply

Your email address will not be published. Required fields are marked *