Question Number 57236 by maxmathsup by imad last updated on 31/Mar/19

Commented by maxmathsup by imad last updated on 04/Apr/19
![let find A_(n,p) =∫_0 ^1 t^n (1−t)^p dt by parts u^′ =t^n and v=(1−t)^p A_(n,p) =[(1/(n+1))t^(n+1) (1−t)^p ]_0 ^1 −∫_0 ^1 (1/(n+1))t^(n+1) (−p)(1−t)^(p−1) dt =(p/(n+1)) ∫_0 ^1 t^(n+1) (1−t)^(p−1) =(p/(n+1)) A_(n+1,p−1) ⇒ A_(n,p) =((p(p−1))/((n+1)(n+2))) A_(n+2,p−2) =((p(p−1)...(p−k+1))/((n+1)(n+2)....(n+k)))A_(n+k,p−k) .=_(k=p) ((p!)/((n+1)(n+2)....(n+p)))A_(n+p,o) A_(n+p,0) =∫_0 ^1 t^(n+p) dt =(1/(n+p+1)) ⇒A_(n,p) =((p!)/((n+1)(n+2)...(n+p+1))) ⇒ A_(n,p) =((p!)/((n+p+1)!)) ×n! =((n! .p!)/((n+p+1)!)) ⇒ A_n =A_(2n,n) =(((2n)!(n!))/((3n+1)!))](https://www.tinkutara.com/question/Q57449.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Apr/19

Commented by maxmathsup by imad last updated on 04/Apr/19
