Menu Close

closest-distance-point-6-9-to-curve-y-x-2-12x-32-mister-w-your-method-can-be-applied-to-this-problem-




Question Number 83520 by john santu last updated on 03/Mar/20
closest distance point (6,9)   to curve y = x^2 −12x+32 .  mister w your method can be   applied to this problem?
closestdistancepoint(6,9)tocurvey=x212x+32.misterwyourmethodcanbeappliedtothisproblem?
Answered by john santu last updated on 03/Mar/20
⇒ y = (x−6)^2 −4  (x−6)^2  = y+4  the distance d = (√((x−6)^2 +(y−9)^2 ))  d^2  = y+4 + y^2 −18y+81  y^2  −17y + 85−d^2  = 0  tangency Δ=0  17^2  −4(85−d^2 )=0  d = (√((340−289)/4)) = ((√(51))/2)
y=(x6)24(x6)2=y+4thedistanced=(x6)2+(y9)2d2=y+4+y218y+81y217y+85d2=0tangencyΔ=01724(85d2)=0d=3402894=512
Commented by jagoll last updated on 03/Mar/20
compare with differential  d= (√((x−6)^2 +(y−9)^2 ))   = (√(y+4+(y−9)^2 ))  let f(y)= y+4+(y−9)^2   f′(y) = 1+2(y−9)=0  y−9=−(1/2) ⇒y+4 = 13−(1/2)  y+4 = ((25)/2) ⇒ d_(min)  = (√(((25)/2)+(1/4)))  d_(min)  = ((√(51))/2)
comparewithdifferentiald=(x6)2+(y9)2=y+4+(y9)2letf(y)=y+4+(y9)2f(y)=1+2(y9)=0y9=12y+4=1312y+4=252dmin=252+14dmin=512
Commented by mr W last updated on 03/Mar/20
good!
good!

Leave a Reply

Your email address will not be published. Required fields are marked *