Question Number 32541 by rahul 19 last updated on 27/Mar/18
$${Coefficient}\:{of}\:{x}^{\mathrm{5}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left({x}^{\mathrm{2}} −{x}−\mathrm{2}\right)^{\mathrm{5}} \:{is} \\ $$
Answered by MJS last updated on 27/Mar/18
$$=\left({x}−\mathrm{2}\right)^{\mathrm{5}} \left({x}+\mathrm{1}\right)^{\mathrm{5}} \\ $$$$\mathrm{coefficients}\:\mathrm{of}\:\left({a}\pm{b}\right)^{\mathrm{5}} \\ $$$$\mathrm{1};\:\pm\mathrm{5};\:\mathrm{10};\:\pm\mathrm{10};\:\mathrm{5};\:\pm\mathrm{1} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{5}} = \\ $$$$={x}^{\mathrm{5}} −\mathrm{10}{x}^{\mathrm{4}} +\mathrm{40}{x}^{\mathrm{3}} −\mathrm{80}{x}^{\mathrm{2}} +\mathrm{80}{x}−\mathrm{32} \\ $$$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} = \\ $$$$={x}^{\mathrm{5}} +\mathrm{5}{x}^{\mathrm{4}} +\mathrm{10}{x}^{\mathrm{3}} +\mathrm{10}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1} \\ $$$$\mathrm{now}\:\mathrm{just}\:\mathrm{multiplicate}\:\mathrm{those} \\ $$$$\mathrm{who}\:\mathrm{will}\:\mathrm{give}\:{x}^{\mathrm{5}} \\ $$$$\mathrm{1}−\mathrm{50}+\mathrm{400}−\mathrm{800}+\mathrm{400}−\mathrm{32}=−\mathrm{81} \\ $$
Commented by rahul 19 last updated on 27/Mar/18
$${Thank}\:{u}\:{sir}. \\ $$
Answered by Tinkutara last updated on 28/Mar/18
$$\left({x}^{\mathrm{2}} −{x}−\mathrm{2}\right)^{\mathrm{5}} =\Sigma\frac{\mathrm{5}!}{{a}!{b}!{c}!}\left({x}^{\mathrm{2}} \right)^{{a}} \left(−{x}\right)^{{b}} \left(−\mathrm{2}\right)^{{c}} \\ $$$$=\Sigma\frac{\mathrm{5}!}{{a}!{b}!{c}!}\left(−\mathrm{1}\right)^{{b}+{c}} .\mathrm{2}^{{c}} .{x}^{\mathrm{2}{a}+{b}} \\ $$$${a}+{b}+{c}=\mathrm{5},\:\mathrm{2}{a}+{b}=\mathrm{5} \\ $$$${There}\:{are}\:{only}\:\mathrm{3}\:{cases}\:{for}\:{a},{b},{c}: \\ $$$$\left(\mathrm{1}\right){a}=\mathrm{0},{b}=\mathrm{5},{c}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right){a}=\mathrm{1},{b}=\mathrm{3},{c}=\mathrm{1} \\ $$$$\left(\mathrm{3}\right){a}=\mathrm{2},{b}=\mathrm{1},{c}=\mathrm{2} \\ $$$${Coefficient}\:{of}\:{x}^{\mathrm{2}{a}+{b}} \:{is} \\ $$$$=\Sigma\frac{\mathrm{5}!}{{a}!{b}!{c}!}\left(−\mathrm{1}\right)^{{b}+{c}} .\mathrm{2}^{{c}} \\ $$$${So}\:{we}\:{get}\:\frac{\mathrm{5}!}{\mathrm{0}!\mathrm{5}!\mathrm{0}!}\left(−\mathrm{1}\right)+\frac{\mathrm{5}!}{\mathrm{3}!}×\mathrm{2}+\frac{\mathrm{5}!}{\mathrm{2}!\mathrm{2}!}\left(−\mathrm{1}\right)×\mathrm{4} \\ $$$$=−\mathrm{1}+\mathrm{40}−\mathrm{120}=−\mathrm{81} \\ $$
Commented by rahul 19 last updated on 28/Mar/18
$${thank}\:{u}\:{so}\:{much}. \\ $$