Menu Close

Coefficient-of-x-5-in-the-expansion-of-x-2-x-2-5-is-




Question Number 32541 by rahul 19 last updated on 27/Mar/18
Coefficient of x^5  in the expansion  of (x^2 −x−2)^5  is
Coefficientofx5intheexpansionof(x2x2)5is
Answered by MJS last updated on 27/Mar/18
=(x−2)^5 (x+1)^5   coefficients of (a±b)^5   1; ±5; 10; ±10; 5; ±1  (x−2)^5 =  =x^5 −10x^4 +40x^3 −80x^2 +80x−32  (x+1)^2 =  =x^5 +5x^4 +10x^3 +10x^2 +5x+1  now just multiplicate those  who will give x^5   1−50+400−800+400−32=−81
=(x2)5(x+1)5coefficientsof(a±b)51;±5;10;±10;5;±1(x2)5==x510x4+40x380x2+80x32(x+1)2==x5+5x4+10x3+10x2+5x+1nowjustmultiplicatethosewhowillgivex5150+400800+40032=81
Commented by rahul 19 last updated on 27/Mar/18
Thank u sir.
Thankusir.
Answered by Tinkutara last updated on 28/Mar/18
(x^2 −x−2)^5 =Σ((5!)/(a!b!c!))(x^2 )^a (−x)^b (−2)^c   =Σ((5!)/(a!b!c!))(−1)^(b+c) .2^c .x^(2a+b)   a+b+c=5, 2a+b=5  There are only 3 cases for a,b,c:  (1)a=0,b=5,c=0  (2)a=1,b=3,c=1  (3)a=2,b=1,c=2  Coefficient of x^(2a+b)  is  =Σ((5!)/(a!b!c!))(−1)^(b+c) .2^c   So we get ((5!)/(0!5!0!))(−1)+((5!)/(3!))×2+((5!)/(2!2!))(−1)×4  =−1+40−120=−81
(x2x2)5=Σ5!a!b!c!(x2)a(x)b(2)c=Σ5!a!b!c!(1)b+c.2c.x2a+ba+b+c=5,2a+b=5Thereareonly3casesfora,b,c:(1)a=0,b=5,c=0(2)a=1,b=3,c=1(3)a=2,b=1,c=2Coefficientofx2a+bis=Σ5!a!b!c!(1)b+c.2cSoweget5!0!5!0!(1)+5!3!×2+5!2!2!(1)×4=1+40120=81
Commented by rahul 19 last updated on 28/Mar/18
thank u so much.
thankusomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *