Menu Close

Comment-resoudre-cette-eqution-2-x-3-y-2-1-




Question Number 53063 by Tristan last updated on 16/Jan/19
Comment resoudre cette eqution   2^x ×3−y^2 =−1
$$\mathrm{Comment}\:\mathrm{resoudre}\:\mathrm{cette}\:\mathrm{eqution}\: \\ $$$$\mathrm{2}^{\mathrm{x}} ×\mathrm{3}−\mathrm{y}^{\mathrm{2}} =−\mathrm{1} \\ $$
Answered by MJS last updated on 18/Jan/19
(1)  y=±(√(3×2^x +1))  ⇒ x∈R  (2)  2^x =((y^2 −1)/3)  xln 2 =ln (y^2 −1) −ln 3  x=log_2  (y^2 −1) −log_2  3  ⇒ y^2 >1 ⇒ y∈R\[−1;1]
$$\left(\mathrm{1}\right) \\ $$$${y}=\pm\sqrt{\mathrm{3}×\mathrm{2}^{{x}} +\mathrm{1}} \\ $$$$\Rightarrow\:{x}\in\mathbb{R} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{2}^{{x}} =\frac{{y}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}} \\ $$$${x}\mathrm{ln}\:\mathrm{2}\:=\mathrm{ln}\:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{ln}\:\mathrm{3} \\ $$$${x}=\mathrm{log}_{\mathrm{2}} \:\left({y}^{\mathrm{2}} −\mathrm{1}\right)\:−\mathrm{log}_{\mathrm{2}} \:\mathrm{3} \\ $$$$\Rightarrow\:{y}^{\mathrm{2}} >\mathrm{1}\:\Rightarrow\:{y}\in\mathbb{R}\backslash\left[−\mathrm{1};\mathrm{1}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *