Menu Close

Compare-100-101-and-101-100-




Question Number 146680 by mathdanisur last updated on 14/Jul/21
Compare:  100^(101)   and   101^(100)
Compare:100101and101100
Answered by Olaf_Thorendsen last updated on 14/Jul/21
log_(10) 101 = 2+log_(10) (1+(1/(100)))  100log_(10) 101 = 200+100log_(10) (1+(1/(100)))  100log_(10) 101 < 200+100×(1/(100))  100log_(10) 101 < 201 < 202 = 101×2 = 101log_(10) 100  100log_(10) 101 < 101log_(10) 100  101^(100)  < 100^(101)
log10101=2+log10(1+1100)100log10101=200+100log10(1+1100)100log10101<200+100×1100100log10101<201<202=101×2=101log10100100log10101<101log10100101100<100101
Commented by mathdanisur last updated on 15/Jul/21
thankyou Ser cool
thankyouSercool
Answered by mr W last updated on 15/Jul/21
y=x^(1/x)   ln y=((ln x)/x)  ((y′)/y)=((1−ln x)/x^2 )  y′=(x^(1/x) /x^2 )(1−ln x)<0 for x>e  that means if x>e, y=x^(1/x)  is  strictly decreasing.  ⇒100^(1/(100)) >101^(1/(101))   ⇒100^((101)/(100)) >101  ⇒100^(101) >101^(100)
y=x1xlny=lnxxyy=1lnxx2y=x1xx2(1lnx)<0forx>ethatmeansifx>e,y=x1xisstrictlydecreasing.1001100>1011101100101100>101100101>101100
Commented by mathdanisur last updated on 15/Jul/21
thankyou Ser cool
thankyouSercool
Commented by mr W last updated on 15/Jul/21
applying this we can get  (3)^(1/3) >(4)^(1/4) >(5)^(1/5) >...  since (4)^(1/4) =(√2), so we get also  (√2)<(3)^(1/3)
applyingthiswecanget33>44>55>since44=2,sowegetalso2<33

Leave a Reply

Your email address will not be published. Required fields are marked *