Menu Close

Compare-1900-3-4-99-3-4-and-1999-3-4-




Question Number 149469 by mathdanisur last updated on 05/Aug/21
Compare:  1900^(3/4)  +  99^(3/4)    and   1999^(3/4)
Compare:190034+9934and199934
Answered by mindispower last updated on 05/Aug/21
f(x)=x^(3/4) +(1−x)^(3/4) ,x∈[0,1[,f(1−x)=f(x)  f′(x)=(3/4)((1/x^(1/4) )−(1/((1−x)^(1/4) )))=(3/4)((((1−x)^(1/4) −x^(1/4) )/((x(1−x))^(1/4) )))  if x≤(1/2),f′>0  if x∈](1/2),1[ f′<0  f(1)=f(0)=1  ⇒∀x∈[0,1]  f(x)≥1  for x=((1900)/(1999))  f(((1900)/(1999)))=(((1900)/(1999)))^(3/4) +(1−((1900)/(1999)))^(3/4) ≥1  ⇒(1900)^(3/4) +99^(3/4) ≥1999^(3/4)
f(x)=x34+(1x)34,x[0,1[,f(1x)=f(x)f(x)=34(1x141(1x)14)=34((1x)14x14(x(1x))14)ifx12,f>0ifx]12,1[f<0f(1)=f(0)=1x[0,1]f(x)1forx=19001999f(19001999)=(19001999)34+(119001999)341(1900)34+9934199934
Commented by mathdanisur last updated on 05/Aug/21
Thank You Ser Cool
ThankYouSerCool
Commented by mathdanisur last updated on 06/Aug/21
Ser, can it be written as Newton′s   Binomial or inequality.?
Ser,canitbewrittenasNewtonsBinomialorinequality.?

Leave a Reply

Your email address will not be published. Required fields are marked *