Menu Close

Compare-it-log-4-20-2-and-log-4-320-




Question Number 158814 by HongKing last updated on 09/Nov/21
Compare it:  (log_4 20)^2    and   log_4 320
$$\mathrm{Compare}\:\mathrm{it}: \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:\mathrm{and}\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 09/Nov/21
(log_4 20)^2    =^(?)    log_4 320  (log_4 (2^2 .5))^2    =^(?)    log_4 (2^6 .5)  (2log_4 2+log_4 5   )^2 =^(?) 6log_4 2+log_4 5   (2((1/2))+log_4 5   )^2 =^(?) 6((1/2))+log_4 5   (1+log_4 5   )^2 =^(?) 3+log_4 5   1+(log_4 5)^2 +2log_4 5    =^(?) 3+log_4 5   (log_4 5)^2 +log_4 5    =^(?) 2  Obviously log_4 5>log_4 4=1  (log_4 5)^2 +log_4 5>(log_4 4)^2 +log_4 4  (log_4 5)^2 +log_4 5>1+1=2  ∴ (log_4 20)^2    >   log_4 320
$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:\overset{?} {=}\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \left(\mathrm{2}^{\mathrm{2}} .\mathrm{5}\right)\right)^{\mathrm{2}} \:\:\:\overset{?} {=}\:\:\:\mathrm{log}_{\mathrm{4}} \left(\mathrm{2}^{\mathrm{6}} .\mathrm{5}\right) \\ $$$$\left(\mathrm{2log}_{\mathrm{4}} \mathrm{2}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{6log}_{\mathrm{4}} \mathrm{2}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{1}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{3}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\mathrm{1}+\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{2log}_{\mathrm{4}} \mathrm{5}\:\:\:\:\overset{?} {=}\mathrm{3}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\:\overset{?} {=}\mathrm{2} \\ $$$${Obviously}\:\mathrm{log}_{\mathrm{4}} \mathrm{5}>\mathrm{log}_{\mathrm{4}} \mathrm{4}=\mathrm{1} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}>\left(\mathrm{log}_{\mathrm{4}} \mathrm{4}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{4} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}>\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$$\therefore\:\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:>\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$
Commented by HongKing last updated on 09/Nov/21
thank you very much my dear Ser cool
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{cool} \\ $$
Answered by Raxreedoroid last updated on 09/Nov/21
log_4  20 =1+log_4  5  (log_4  20)^2 =log_4  20+(log_4  20)(log_4 5)  log_4  320=log_4  20 +log_4  16  ∴ (log_4  20)^2 >log_4  320
$$\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\:=\mathrm{1}+\mathrm{log}_{\mathrm{4}} \:\mathrm{5} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)^{\mathrm{2}} =\mathrm{log}_{\mathrm{4}} \:\mathrm{20}+\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right) \\ $$$$\mathrm{log}_{\mathrm{4}} \:\mathrm{320}=\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\:+\mathrm{log}_{\mathrm{4}} \:\mathrm{16} \\ $$$$\therefore\:\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)^{\mathrm{2}} >\mathrm{log}_{\mathrm{4}} \:\mathrm{320} \\ $$
Commented by HongKing last updated on 09/Nov/21
thank you very much dear Ser cool
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *