Question Number 158814 by HongKing last updated on 09/Nov/21
$$\mathrm{Compare}\:\mathrm{it}: \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:\mathrm{and}\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 09/Nov/21
$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:\overset{?} {=}\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \left(\mathrm{2}^{\mathrm{2}} .\mathrm{5}\right)\right)^{\mathrm{2}} \:\:\:\overset{?} {=}\:\:\:\mathrm{log}_{\mathrm{4}} \left(\mathrm{2}^{\mathrm{6}} .\mathrm{5}\right) \\ $$$$\left(\mathrm{2log}_{\mathrm{4}} \mathrm{2}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{6log}_{\mathrm{4}} \mathrm{2}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{1}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\right)^{\mathrm{2}} \overset{?} {=}\mathrm{3}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\mathrm{1}+\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{2log}_{\mathrm{4}} \mathrm{5}\:\:\:\:\overset{?} {=}\mathrm{3}+\mathrm{log}_{\mathrm{4}} \mathrm{5}\: \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}\:\:\:\:\overset{?} {=}\mathrm{2} \\ $$$${Obviously}\:\mathrm{log}_{\mathrm{4}} \mathrm{5}>\mathrm{log}_{\mathrm{4}} \mathrm{4}=\mathrm{1} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}>\left(\mathrm{log}_{\mathrm{4}} \mathrm{4}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{4} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right)^{\mathrm{2}} +\mathrm{log}_{\mathrm{4}} \mathrm{5}>\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$$\therefore\:\left(\mathrm{log}_{\mathrm{4}} \mathrm{20}\right)^{\mathrm{2}} \:\:\:>\:\:\:\mathrm{log}_{\mathrm{4}} \mathrm{320} \\ $$
Commented by HongKing last updated on 09/Nov/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{cool} \\ $$
Answered by Raxreedoroid last updated on 09/Nov/21
$$\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\:=\mathrm{1}+\mathrm{log}_{\mathrm{4}} \:\mathrm{5} \\ $$$$\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)^{\mathrm{2}} =\mathrm{log}_{\mathrm{4}} \:\mathrm{20}+\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)\left(\mathrm{log}_{\mathrm{4}} \mathrm{5}\right) \\ $$$$\mathrm{log}_{\mathrm{4}} \:\mathrm{320}=\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\:+\mathrm{log}_{\mathrm{4}} \:\mathrm{16} \\ $$$$\therefore\:\left(\mathrm{log}_{\mathrm{4}} \:\mathrm{20}\right)^{\mathrm{2}} >\mathrm{log}_{\mathrm{4}} \:\mathrm{320} \\ $$
Commented by HongKing last updated on 09/Nov/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{Ser}\:\mathrm{cool} \\ $$