Menu Close

Compare-it-log-4-20-2-and-log-4-320-




Question Number 158814 by HongKing last updated on 09/Nov/21
Compare it:  (log_4 20)^2    and   log_4 320
Compareit:(log420)2andlog4320
Answered by Rasheed.Sindhi last updated on 09/Nov/21
(log_4 20)^2    =^(?)    log_4 320  (log_4 (2^2 .5))^2    =^(?)    log_4 (2^6 .5)  (2log_4 2+log_4 5   )^2 =^(?) 6log_4 2+log_4 5   (2((1/2))+log_4 5   )^2 =^(?) 6((1/2))+log_4 5   (1+log_4 5   )^2 =^(?) 3+log_4 5   1+(log_4 5)^2 +2log_4 5    =^(?) 3+log_4 5   (log_4 5)^2 +log_4 5    =^(?) 2  Obviously log_4 5>log_4 4=1  (log_4 5)^2 +log_4 5>(log_4 4)^2 +log_4 4  (log_4 5)^2 +log_4 5>1+1=2  ∴ (log_4 20)^2    >   log_4 320
(log420)2=?log4320(log4(22.5))2=?log4(26.5)(2log42+log45)2=?6log42+log45(2(12)+log45)2=?6(12)+log45(1+log45)2=?3+log451+(log45)2+2log45=?3+log45(log45)2+log45=?2Obviouslylog45>log44=1(log45)2+log45>(log44)2+log44(log45)2+log45>1+1=2(log420)2>log4320
Commented by HongKing last updated on 09/Nov/21
thank you very much my dear Ser cool
thankyouverymuchmydearSercool
Answered by Raxreedoroid last updated on 09/Nov/21
log_4  20 =1+log_4  5  (log_4  20)^2 =log_4  20+(log_4  20)(log_4 5)  log_4  320=log_4  20 +log_4  16  ∴ (log_4  20)^2 >log_4  320
log420=1+log45(log420)2=log420+(log420)(log45)log4320=log420+log416(log420)2>log4320
Commented by HongKing last updated on 09/Nov/21
thank you very much dear Ser cool
thankyouverymuchdearSercool

Leave a Reply

Your email address will not be published. Required fields are marked *