Menu Close

Compare-x-sin-165-y-cos-165-z-tan-165-




Question Number 150603 by mathdanisur last updated on 13/Aug/21
Compare:  x=sin(165°)  y=cos(165°)  z=tan(165°)
$$\mathrm{Compare}: \\ $$$$\boldsymbol{\mathrm{x}}=\mathrm{sin}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{cos}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{z}}=\mathrm{tan}\left(\mathrm{165}°\right) \\ $$
Answered by ajfour last updated on 13/Aug/21
x=sin 15°=(((√3)−1)/( 2(√2)))  y=−cos 15°=−(((√3)+1)/(2(√2)))  z=−(((√3)−1)/( (√3)+1))  x:y:z≡(√3)−1,−( (√3)+1), −2(√2)((((√3)−1)/( (√3)+1)))  x:y:z≡1, −(2+(√3)), −4((√2)−1)  x:y:z≅ 1,−3.732,−2.928
$${x}=\mathrm{sin}\:\mathrm{15}°=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${y}=−\mathrm{cos}\:\mathrm{15}°=−\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${z}=−\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}} \\ $$$${x}:{y}:{z}\equiv\sqrt{\mathrm{3}}−\mathrm{1},−\left(\:\sqrt{\mathrm{3}}+\mathrm{1}\right),\:−\mathrm{2}\sqrt{\mathrm{2}}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\right) \\ $$$${x}:{y}:{z}\equiv\mathrm{1},\:−\left(\mathrm{2}+\sqrt{\mathrm{3}}\right),\:−\mathrm{4}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$${x}:{y}:{z}\cong\:\mathrm{1},−\mathrm{3}.\mathrm{732},−\mathrm{2}.\mathrm{928} \\ $$
Commented by mathdanisur last updated on 14/Aug/21
Thankyou Ser
$$\mathrm{Thankyou}\:\mathrm{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *