Menu Close

Conclude-the-value-of-the-sum-S-n-n-0-2-n-1-2-n-n-n-with-help-of-1-2x-n-




Question Number 178530 by Acem last updated on 17/Oct/22
Conclude the value of the sum:  S_n = ((n),(0) ) + 2 ((n),(1) )+...+ 2^n  ((n),(n) )    with help of (1+2x)^n
$${Conclude}\:{the}\:{value}\:{of}\:{the}\:{sum}: \\ $$$${S}_{{n}} =\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}\:+\:\mathrm{2}\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+…+\:\mathrm{2}^{{n}} \begin{pmatrix}{{n}}\\{{n}}\end{pmatrix}\: \\ $$$$\:{with}\:{help}\:{of}\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{{n}} \\ $$
Answered by Ar Brandon last updated on 17/Oct/22
S=Σ_(k=0) ^n  ^n C_k 2^k =(2+1)^n =3^n   Σ_(k=0) ^n  ^n C_k a^k b^(n−k) =(a+b)^n
$${S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\overset{{n}} {\:}{C}_{{k}} \mathrm{2}^{{k}} =\left(\mathrm{2}+\mathrm{1}\right)^{{n}} =\mathrm{3}^{{n}} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\overset{{n}} {\:}{C}_{{k}} {a}^{{k}} {b}^{{n}−{k}} =\left({a}+{b}\right)^{{n}} \\ $$
Commented by Acem last updated on 17/Oct/22
Great Sir!
$${Great}\:{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *