Conjecture-a-formula-for-the-infinite-sum-of-the-series-1-3-1-15-1-35-1-2n-1-2n-1-And-prove-the-formula-by-Induction- Tinku Tara June 4, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 118488 by Lordose last updated on 18/Oct/20 \boldsymbolConjecture\boldsymbola\boldsymbolformula\boldsymbolfor\boldsymbolthe\boldsymbolinfinite\boldsymbolsum\boldsymbolof\boldsymbolthe\boldsymbolseries.13+115+135+⋅⋅⋅1(2\boldsymboln−1)(2\boldsymboln+1)\boldsymbolAnd\boldsymbolprove\boldsymbolthe\boldsymbolformula\boldsymbolby\boldsymbolInduction. Answered by Olaf last updated on 18/Oct/20 1(2k−1)(2k+1)=12(12k−1−12k+1)Sn=∑nk=11(2k−1)(2k+1)Sn=12∑nk=112k−1−12∑nk=112k+1Sn=12∑n−1k=012k+1−12∑nk=112k+1Sn=12(1+∑nk=112k+1−12n+1)−12∑nk=112k+1Sn=12(1−12n+1)=n2n+1Induction:forn=1,S1=11.3=13=12(1)+1⇒theformulaistrueforn=1Nowwesupposetheformulaistrueforn.Sn+1=Sn+1(2n+1)(2n+3)Sn+1=n2n+1+1(2n+1)(2n+3)Sn+1=n(2n+3)+1(2n+1)(2n+3)Sn+1=2n2+3n+1(2n+1)(2n+3)Sn+1=2(n+1)(n+12)(2n+1)(2n+3)Sn+1=n+12n+3Sntrue⇒Sn+1trueFinally,Sn=n2n+1,n⩾1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Can-you-pls-help-me-with-that-but-only-by-using-the-derivative-of-f-1-and-not-using-the-defined-defivative-of-f-x-itself-Thanks-f-x-x-2-x-f-1-Next Next post: Advanced-Calculus-Evaluate-0-sec-4tan-2-5-d-L-rD-sE-GooD-LucK- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.