Menu Close

consider-a-non-singular-2-2-square-matrix-T-If-trace-T-4-and-trace-T-2-5-what-is-determinant-of-the-matrix-T-




Question Number 117973 by bemath last updated on 14/Oct/20
consider a non−singular 2×2   square matrix T. If trace (T) =4  and trace (T^2 )=5 what is determinant  of the matrix T ?
consideranonsingular2×2squarematrixT.Iftrace(T)=4andtrace(T2)=5whatisdeterminantofthematrixT?
Answered by bobhans last updated on 14/Oct/20
letting p and q denote the eigenvalues of T  we have tr(T)= p+q = 4...(i)  then because p^2  and q^2  are the eigenvalues  of T^2  it follows that tr(T^2 )=p^2 +q^2 =5...(ii)  solving eq (i) & (ii)  2p^2 −8p+11 = 0 ⇒p= ((4±i(√6))/2) ∧ q=((4∓ i(√6))/2)  Determinan of T is the product of its  eigenvalues , we get ∣T∣ = (((4+i(√6))/2))(((4−i(√6))/2))=((11)/2)
lettingpandqdenotetheeigenvaluesofTwehavetr(T)=p+q=4(i)thenbecausep2andq2aretheeigenvaluesofT2itfollowsthattr(T2)=p2+q2=5(ii)solvingeq(i)&(ii)2p28p+11=0p=4±i62q=4i62DeterminanofTistheproductofitseigenvalues,wegetT=(4+i62)(4i62)=112

Leave a Reply

Your email address will not be published. Required fields are marked *