Menu Close

Consider-a-sequence-in-the-form-of-groups-1-2-2-3-3-3-4-4-4-4-5-5-5-5-5-then-the-2000th-term-of-the-above-sequence-is-




Question Number 31771 by rahul 19 last updated on 14/Mar/18
Consider a sequence in the form of  groups (1),(2,2),(3,3,3),(4,4,4,4),  (5,5,5,5,5),............  then the 2000th term of the above   sequence is : ?
$${Consider}\:{a}\:{sequence}\:{in}\:{the}\:{form}\:{of} \\ $$$${groups}\:\left(\mathrm{1}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right), \\ $$$$\left(\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5}\right),………… \\ $$$${then}\:{the}\:\mathrm{2000}{th}\:{term}\:{of}\:{the}\:{above}\: \\ $$$${sequence}\:{is}\::\:? \\ $$
Commented by Joel578 last updated on 14/Mar/18
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,...
$$\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3},\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},… \\ $$
Answered by Tinkutara last updated on 14/Mar/18
Let S_n =1+2+3+...+(n terms)  S_n =((n(n+1))/2)  Now observe S_4 =10. It means 10^(th)  term  is the last “4”.  Similarly S_5 =15 means 15^(th)  term  is the last “5”.  ⋮  ((n(n+1))/2)=2000  n≈62.75  S_(62) =1953⇒1953^(rd)  term is the last 62.  S_(63) =2016⇒2016^(th)  term is the last 63.  In between, 2000^(th)  term is 63.
$${Let}\:{S}_{{n}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\left({n}\:{terms}\right) \\ $$$${S}_{{n}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${Now}\:{observe}\:{S}_{\mathrm{4}} =\mathrm{10}.\:{It}\:{means}\:\mathrm{10}^{{th}} \:{term} \\ $$$${is}\:{the}\:{last}\:“\mathrm{4}''. \\ $$$${Similarly}\:{S}_{\mathrm{5}} =\mathrm{15}\:{means}\:\mathrm{15}^{{th}} \:{term} \\ $$$${is}\:{the}\:{last}\:“\mathrm{5}''. \\ $$$$\vdots \\ $$$$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{2000} \\ $$$${n}\approx\mathrm{62}.\mathrm{75} \\ $$$${S}_{\mathrm{62}} =\mathrm{1953}\Rightarrow\mathrm{1953}^{{rd}} \:{term}\:{is}\:{the}\:{last}\:\mathrm{62}. \\ $$$${S}_{\mathrm{63}} =\mathrm{2016}\Rightarrow\mathrm{2016}^{{th}} \:{term}\:{is}\:{the}\:{last}\:\mathrm{63}. \\ $$$${In}\:{between},\:\mathrm{2000}^{{th}} \:{term}\:{is}\:\mathrm{63}. \\ $$
Commented by rahul 19 last updated on 14/Mar/18
WOW  !
$$\boldsymbol{\mathcal{W}}\mathbb{O}\mathscr{W}\:\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *