Question Number 164039 by ArielVyny last updated on 13/Jan/22
$${consider}\:{f}\:{function}\:{Df}=\left[\mathrm{0},\mathrm{1}\right] \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right)\:{c}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:{show}\:{that}\:{f}\left({c}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Answered by Ar Brandon last updated on 13/Jan/22
$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right) \\ $$$${f}\left({c}+\mathrm{0}\right)={f}\left({c}+\mathrm{1}\right)\:,\:\mathrm{since}\:{f}\:<\:\mathrm{1}-\mathrm{periodic} \\ $$$${f}\left({c}\right)={f}\left(\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{Hence}\:{f}\left({c}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by Ar Brandon last updated on 13/Jan/22
Thank You M.A
Commented by Ar Brandon last updated on 13/Jan/22
Thank You, Sir
Commented by Ar Brandon last updated on 13/Jan/22
I just turned 19 todayπΊπ½π€Έπ
Commented by Rasheed.Sindhi last updated on 13/Jan/22
πππHappy birthday to you!
Commented by ArielVyny last updated on 13/Jan/22
$${my}\:{best}\:{regards}\:{to}\:{mister}\:{brandon} \\ $$
Commented by Ar Brandon last updated on 13/Jan/22
Merci bro
Commented by amin96 last updated on 13/Jan/22
$$ \\ $$happy birthday πβ¨πβπππ°
Commented by Lordose last updated on 14/Jan/22
$$\boldsymbol{\mathrm{H}}\mathrm{appy}\:\mathrm{Birthday}\:\mathrm{Bro} \\ $$
Commented by Lordose last updated on 14/Jan/22
Commented by Ar Brandon last updated on 14/Jan/22
Thank you!
Commented by Ar Brandon last updated on 14/Jan/22
Thank You all , forum friends I was 17 when I first entered the forum, and I was so novice. Today thanks to all your teachings I've learned very much. I remain ever grateful