Menu Close

consider-f-function-Df-0-1-f-0-f-1-c-0-1-2-show-that-f-c-f-c-1-2-




Question Number 164039 by ArielVyny last updated on 13/Jan/22
consider f function Df=[0,1]  f(0)=f(1) c∈[0,(1/2)] show that f(c)=f(c+(1/2))
$${consider}\:{f}\:{function}\:{Df}=\left[\mathrm{0},\mathrm{1}\right] \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right)\:{c}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:{show}\:{that}\:{f}\left({c}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Answered by Ar Brandon last updated on 13/Jan/22
f(0)=f(1)  f(c+0)=f(c+1) , since f < 1-periodic  f(c)=f((c+(1/2))+(1/2))=f(c+(1/2))  Hence f(c)=f(c+(1/2))
$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right) \\ $$$${f}\left({c}+\mathrm{0}\right)={f}\left({c}+\mathrm{1}\right)\:,\:\mathrm{since}\:{f}\:<\:\mathrm{1}-\mathrm{periodic} \\ $$$${f}\left({c}\right)={f}\left(\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{Hence}\:{f}\left({c}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by Ar Brandon last updated on 13/Jan/22
Thank You M.A������
Commented by Ar Brandon last updated on 13/Jan/22
��Thank You, Sir ����
Commented by Ar Brandon last updated on 13/Jan/22
I just turned 19 todayπŸ•ΊπŸ½πŸ€ΈπŸ’ƒ
I just turned 19 todayπŸ•ΊπŸ½πŸ€ΈπŸ’ƒ
Commented by Rasheed.Sindhi last updated on 13/Jan/22
πŸŽ‚πŸŽπŸŽ‚Happy birthday to you!
πŸŽ‚πŸŽπŸŽ‚Happy birthday to you!
Commented by ArielVyny last updated on 13/Jan/22
my best regards to mister brandon
$${my}\:{best}\:{regards}\:{to}\:{mister}\:{brandon} \\ $$
Commented by Ar Brandon last updated on 13/Jan/22
Merci bro ��
Commented by amin96 last updated on 13/Jan/22
  happy birthday πŸŒŸβœ¨πŸŒŸβ­πŸŽ‰πŸŽŠπŸ°
$$ \\ $$happy birthday πŸŒŸβœ¨πŸŒŸβ­πŸŽ‰πŸŽŠπŸ°
Commented by Lordose last updated on 14/Jan/22
Happy Birthday Bro
$$\boldsymbol{\mathrm{H}}\mathrm{appy}\:\mathrm{Birthday}\:\mathrm{Bro} \\ $$
Commented by Lordose last updated on 14/Jan/22
����������
Commented by Ar Brandon last updated on 14/Jan/22
��Thank you! ��
Commented by Ar Brandon last updated on 14/Jan/22
Thank You all , forum friends �� I was 17 when I first entered the forum, and I was so novice. Today thanks to all your teachings I've learned very much. I remain ever grateful ��������

Leave a Reply

Your email address will not be published. Required fields are marked *