Menu Close

Consider-f-R-R-such-that-f-3-1-for-a-R-and-f-x-f-y-f-3-x-f-3-y-2f-xy-x-y-R-Then-find-f-x-




Question Number 33649 by rahul 19 last updated on 21/Apr/18
Consider f:R^+ →R such that  f(3)=1 for a∈R^+  and   f(x).f(y) + f((3/x)).f((3/y)) = 2f(xy)  ∀ x,y ∈ R^+ . Then find f(x) ?
Considerf:R+Rsuchthatf(3)=1foraR+andf(x).f(y)+f(3x).f(3y)=2f(xy)x,yR+.Thenfindf(x)?
Commented by rahul 19 last updated on 21/Apr/18
prof Abdo imad , MJS sir  pls help .
profAbdoimad,MJSsirplshelp.
Commented by math khazana by abdo last updated on 21/Apr/18
⇒(f(1))^2  +(f(3))^2  =2f(1)⇒(f(1))^2  −2f(1) +1 =0  ⇒ (f(1)−1)^2 =0 ⇒ f(1)=1 for y=(1/x) ⇒  f(x)f((1/x))  +f((3/x)).f(3x) =2  let x→+∞  f(+∞)f(0) +f(+∞)f(0) =2 ⇒ f(0) f(+∞)=1  this condition prove that f(x)=c(constant)  ∀ x ∈R^+   f(x)f((1/x)) +f((3/x))f(3x) =2 ⇒  c^2  +c^2  =2 ⇒ 2c^2  =2 ⇒ c =+^− 1  but f(1)=f(3) =1  ⇒ f(x)=1 ∀x ∈R^+
(f(1))2+(f(3))2=2f(1)(f(1))22f(1)+1=0(f(1)1)2=0f(1)=1fory=1xf(x)f(1x)+f(3x).f(3x)=2letx+f(+)f(0)+f(+)f(0)=2f(0)f(+)=1thisconditionprovethatf(x)=c(constant)xR+f(x)f(1x)+f(3x)f(3x)=2c2+c2=22c2=2c=+1butf(1)=f(3)=1f(x)=1xR+
Commented by rahul 19 last updated on 22/Apr/18
thank u sir !
thankusir!
Answered by MJS last updated on 21/Apr/18
x=1; y=1  f(1)f(1)+f(3)f(3)=2f(1)  f(1)^2 −2f(1)+1=0  (f(1)−1)^2 =0  f(1)=1    x=3; y=3  f(3)f(3)+f(1)f(1)=2f(9)  1+1=2f(9)  f(9)=1    so at least one solution is  f(x)=1    we could also start with  x=1; y=3  f(1)f(3)+f((3/1))f((3/3))=2f(1×3)  f(1)+f(1)=2 ⇒ f(1)=1
x=1;y=1f(1)f(1)+f(3)f(3)=2f(1)f(1)22f(1)+1=0(f(1)1)2=0f(1)=1x=3;y=3f(3)f(3)+f(1)f(1)=2f(9)1+1=2f(9)f(9)=1soatleastonesolutionisf(x)=1wecouldalsostartwithx=1;y=3f(1)f(3)+f(31)f(33)=2f(1×3)f(1)+f(1)=2f(1)=1
Commented by rahul 19 last updated on 21/Apr/18
sir , actually i also got one of the sol.  as f(x)=1.   But i am finding hard to prove that  for any value of x,y ∈ R^+ .  f(x)=1 only !   i mean only one solution.
sir,actuallyialsogotoneofthesol.asf(x)=1.Butiamfindinghardtoprovethatforanyvalueofx,yR+.f(x)=1only!imeanonlyonesolution.
Commented by MJS last updated on 21/Apr/18
if the function is y=1 then the given equation  is true for all x∈R because  f(x)=f(y)=f((3/x))=f((3/y))=f(xy)=1 and  1×1+1×1=2×1    if x≠y was demanded we′d need a different  function, but I could not find one
ifthefunctionisy=1thenthegivenequationistrueforallxRbecausef(x)=f(y)=f(3x)=f(3y)=f(xy)=1and1×1+1×1=2×1ifxywasdemandedwedneedadifferentfunction,butIcouldnotfindone
Commented by rahul 19 last updated on 22/Apr/18
thank u sir.
thankusir.

Leave a Reply

Your email address will not be published. Required fields are marked *