Question Number 145781 by Engr_Jidda last updated on 08/Jul/21
$${consider}\:{f}\left({x}\right)={Ax}^{\mathrm{2}} +{Bx}+{C} \\ $$$${with}\:{A}>\mathrm{0}.\:{Show}\:{that}\:{f}\left({x}\right)\geqslant\mathrm{0}\:\forall{x}\:\:{iff}\: \\ $$$${B}^{\mathrm{2}} −\mathrm{4}{AC}\leqslant\mathrm{0} \\ $$
Answered by ArielVyny last updated on 08/Jul/21
$${f}\left({x}\right)\geqslant\mathrm{0}\rightarrow{Ax}^{\mathrm{2}} +{Bx}+{C}\geqslant\mathrm{0} \\ $$$${Ax}^{\mathrm{2}} +{Bx}+{C}={A}\left[\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{{B}^{\mathrm{2}} }{\mathrm{4}{A}^{\mathrm{2}} }+\frac{{C}}{{A}}\right]\geqslant\mathrm{0} \\ $$$${A}\left[\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{{B}^{\mathrm{2}} }{\mathrm{4}{A}^{\mathrm{2}} }+\frac{\mathrm{4}{AC}}{\mathrm{4}{A}^{\mathrm{2}} }\right]\geqslant\mathrm{0} \\ $$$${A}\left[\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{{B}^{\mathrm{2}} −\mathrm{4}{AC}}{\mathrm{4}{A}^{\mathrm{2}} }\right]\geqslant\mathrm{0} \\ $$$${then}\:\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{{B}^{\mathrm{2}} −\mathrm{4}{AC}}{\mathrm{4}{A}^{\mathrm{2}} }\geqslant\mathrm{0}\:\:\:{because}\:{A}>\mathrm{0} \\ $$$${now}\:{if}\:{B}^{\mathrm{2}} −\mathrm{4}{AC}\leqslant\mathrm{0}\rightarrow−\frac{{B}^{\mathrm{2}} −\mathrm{4}{AC}}{\mathrm{4}{A}^{\mathrm{2}} }\geqslant\mathrm{0} \\ $$$${and}\:\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$${we}\:{have}\:{A}\left[\left({x}+\frac{{B}}{\mathrm{2}{A}}\right)^{\mathrm{2}} −\frac{{B}^{\mathrm{2}} −\mathrm{4}{AC}}{\mathrm{4}{A}^{\mathrm{2}} }\right]\geqslant\mathrm{0} \\ $$$${for}\:{B}^{\mathrm{2}} −\mathrm{4}{AC}\leqslant\mathrm{0}\:\:{with}\:{A}>\mathrm{0} \\ $$$${finally}\:{f}\left({x}\right)\geqslant\mathrm{0} \\ $$$$ \\ $$