Menu Close

consider-f-x-Ax-2-Bx-C-with-A-gt-0-Show-that-f-x-0-x-iff-B-2-4AC-0-




Question Number 145781 by Engr_Jidda last updated on 08/Jul/21
consider f(x)=Ax^2 +Bx+C  with A>0. Show that f(x)≥0 ∀x  iff   B^2 −4AC≤0
considerf(x)=Ax2+Bx+CwithA>0.Showthatf(x)0xiffB24AC0
Answered by ArielVyny last updated on 08/Jul/21
f(x)≥0→Ax^2 +Bx+C≥0  Ax^2 +Bx+C=A[(x+(B/(2A)))^2 −(B^2 /(4A^2 ))+(C/A)]≥0  A[(x+(B/(2A)))^2 −(B^2 /(4A^2 ))+((4AC)/(4A^2 ))]≥0  A[(x+(B/(2A)))^2 −((B^2 −4AC)/(4A^2 ))]≥0  then (x+(B/(2A)))^2 −((B^2 −4AC)/(4A^2 ))≥0   because A>0  now if B^2 −4AC≤0→−((B^2 −4AC)/(4A^2 ))≥0  and (x+(B/(2A)))^2 ≥0  we have A[(x+(B/(2A)))^2 −((B^2 −4AC)/(4A^2 ))]≥0  for B^2 −4AC≤0  with A>0  finally f(x)≥0
f(x)0Ax2+Bx+C0Ax2+Bx+C=A[(x+B2A)2B24A2+CA]0A[(x+B2A)2B24A2+4AC4A2]0A[(x+B2A)2B24AC4A2]0then(x+B2A)2B24AC4A20becauseA>0nowifB24AC0B24AC4A20and(x+B2A)20wehaveA[(x+B2A)2B24AC4A2]0forB24AC0withA>0finallyf(x)0

Leave a Reply

Your email address will not be published. Required fields are marked *