Menu Close

consider-the-circle-x-1-2-y-1-2-2-A-1-4-B-1-5-if-P-is-a-point-on-the-circle-such-that-PA-PB-is-maximum-then-prove-that-P-A-B-are-collinear-points-




Question Number 145244 by gsk2684 last updated on 03/Jul/21
consider the circle   (x−1)^2 +(y−1)^2 =2,  A(1,4), B(1,−5). if P is   a point on the circle such that  PA+PB is maximum then  prove that P,A,B are collinear   points.
$$\mathrm{consider}\:\mathrm{the}\:\mathrm{circle}\: \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}, \\ $$$$\mathrm{A}\left(\mathrm{1},\mathrm{4}\right),\:\mathrm{B}\left(\mathrm{1},−\mathrm{5}\right).\:\mathrm{if}\:\mathrm{P}\:\mathrm{is}\: \\ $$$$\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PA}+\mathrm{PB}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{P},\mathrm{A},\mathrm{B}\:\mathrm{are}\:\mathrm{collinear}\: \\ $$$$\mathrm{points}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *