Menu Close

Consider-the-D-E-E-x-x-2-1-y-2y-x-3-x-1-2-e-x-a-Resolve-the-DE-x-x-3-1-y-2y-0-b-We-wish-to-find-a-function-g-x-such-that-the-function-h-x-defined-by-h-x-x-3-x-2-1-g-x-is-a-parti




Question Number 123982 by Ar Brandon last updated on 29/Nov/20
Consider the D.E (E): x(x^2 +1)y′−2y=x^3 (x−1)^2 e^(−x)   a\ Resolve the DE x(x^3 +1)y′−2y=0  b\We wish to find a function g(x) such that the function  h(x) defined by h(x)=(x^3 /(x^2 +1))g(x)  is a particular solution of the equation (E)  i\ Show that for it to be as such, we need to have                              g′(x)=(x−1)^2 e^(−x)   ii\ Determine the real numbers α, β, and γ such that  the function x→αx^2 +βx+γ is a primitive in the interval  ]0,+∞[ of the function x→(x−1)^2 e^(−x)   iii\ Deduce a particular solution of the equation (E) then  the general solution of the equation (E)
ConsidertheD.E(E):x(x2+1)y2y=x3(x1)2exaResolvetheDEx(x3+1)y2y=0bWewishtofindafunctiong(x)suchthatthefunctionh(x)definedbyh(x)=x3x2+1g(x)isaparticularsolutionoftheequation(E)iShowthatforittobeassuch,weneedtohaveg(x)=(x1)2exiiDeterminetherealnumbersα,β,andγsuchthatthefunctionxαx2+βx+γisaprimitiveintheinterval]0,+[ofthefunctionx(x1)2exiiiDeduceaparticularsolutionoftheequation(E)thenthegeneralsolutionoftheequation(E)
Answered by mathmax by abdo last updated on 29/Nov/20
a)  x(x^3 +1)y^′ −2y=0 ⇒x(x^3 +1)y^′  =2y ⇒(y^′ /y)=(2/(x(x^3  +1))) ⇒  ln∣y∣=2∫  (dx/(x(x^3 +1)))  +c let decompose F(x)=(1/(x(x^3  +1)))  F(x)=(1/(x(x+1)(x^2 −x+1)))=(a/x)+(b/(x+1)) +((cx+d)/(x^2 −x+1))  a=1 ,  b =((−1)/3) ⇒F(x)=(1/x)−(1/(3(x+1))) +((cx+d)/(x^2 −x+1))  lim_(x→+∞) xF(x)=0 =1−(1/3) +c =(2/3)+c ⇒c=−(2/3)  F(1) =(1/2)=1−(1/6) +c+d =(5/6) +c+d ⇒1=(5/3) −(4/3) +2d ⇒  (1/3)+2d=1 ⇒2d=1−(1/3)=(2/3) ⇒d=(1/3) ⇒  F(x)=(1/x)−(1/(3(x+1))) +((−(2/3)x+(1/3))/(x^2 −x+1)) ⇒  ∫ F(x)dx=ln∣x∣−(1/3)ln∣x+1∣−(1/3)∫  ((2x−1)/(x^2 −x+1))dx  =ln(((∣x∣)/((^3 (√(∣x+1∣)))))−(1/3)ln(x^2 −x+1) +c  ln∣y∣ =2ln(((∣x∣)/((^3 (√(∣x+1∣)))))−(2/3)ln(x^2 −x+1) +c ⇒  y(x)=k ×(x^2 /((x+1)^(2/3) ))(x^2 −x+1)^(−(2/3))  =((kx^2 )/((x^3 +1)^(2/3) ))
a)x(x3+1)y2y=0x(x3+1)y=2yyy=2x(x3+1)lny∣=2dxx(x3+1)+cletdecomposeF(x)=1x(x3+1)F(x)=1x(x+1)(x2x+1)=ax+bx+1+cx+dx2x+1a=1,b=13F(x)=1x13(x+1)+cx+dx2x+1limx+xF(x)=0=113+c=23+cc=23F(1)=12=116+c+d=56+c+d1=5343+2d13+2d=12d=113=23d=13F(x)=1x13(x+1)+23x+13x2x+1F(x)dx=lnx13lnx+1132x1x2x+1dx=ln(x(3x+1)13ln(x2x+1)+clny=2ln(x(3x+1)23ln(x2x+1)+cy(x)=k×x2(x+1)23(x2x+1)23=kx2(x3+1)23
Answered by mathmax by abdo last updated on 29/Nov/20
b)  h(x)=(x^3 /(x^(2 ) +1))g(x) ⇒h^(′ ) =((3x^2 (x^2 +1)−x^3 (2x))/((x^2  +1)^2 ))g   +(x^3 /(x^2  +1))g^′  =((3x^4  +3x^2 −2x^4 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′   =((x^(4 ) +3x^2 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′      h solution of e ⇒  x(x^2 +1)(((x^4  +3x^2 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′ )−((2x^3 )/(x^2  +1))g =x^3 (x−1)e^(−x)  ⇒  ((x(x^4  +3x^2 ))/(x^2  +1))g +x^4 g^′ −((2x^3 )/(x^2  +1))g =x^3 (x−1)e^(−x)  ⇒  ((x^5  +3x^3 −2x^3 )/(x^2  +1))g  +x^4  g^′  =x^3 (x−1)^2 e^(−x)  ⇒  x^(3 )  g +x^4  g^′  =x^3 (x−1)^2 e^(−x)  ⇒g+xg^′  =(x−1)^2 e^(−x)   h→ xg^′  =−g ⇒(g^′ /g)=−(1/x) ⇒ln∣g∣=−ln∣x∣ +c ⇒g=(k/x)  mvc method →g^′  =(k^′ /x)−(k/x^2 )  and e⇒k^′ −(k/x) +(k/x)=(x−1)^2 e^(−x)  ⇒  ⇒k^′  =(x−1)^2 e^(−x)  ⇒k =∫ (x−1)^2 e^(−x)  dx  =−(x−1)^2 e^(−x) +∫ 2(x−1)e^(−x ) dx  =−(x−1)^2  e^(−x)  +2{  −(x−1)e^(−x) +∫ e^(−x)  dx}  =−(x−1)^2 e^(−x)  +2{−xe^(−x) } +c  ={−(x−1)^2 −2x}e^(−x) +c ={ −(x^2 −2x+1)−2x}e^(−x)  +c   =−(x^2  +1)e^(−x)  +c ⇒g(x)=((c−(x^2  +1)e^(−x) )/x)....
b)h(x)=x3x2+1g(x)h=3x2(x2+1)x3(2x)(x2+1)2g+x3x2+1g=3x4+3x22x4(x2+1)2g+x3x2+1g=x4+3x2(x2+1)2g+x3x2+1ghsolutionofex(x2+1)(x4+3x2(x2+1)2g+x3x2+1g)2x3x2+1g=x3(x1)exx(x4+3x2)x2+1g+x4g2x3x2+1g=x3(x1)exx5+3x32x3x2+1g+x4g=x3(x1)2exx3g+x4g=x3(x1)2exg+xg=(x1)2exhxg=ggg=1xlng∣=lnx+cg=kxmvcmethodg=kxkx2andekkx+kx=(x1)2exk=(x1)2exk=(x1)2exdx=(x1)2ex+2(x1)exdx=(x1)2ex+2{(x1)ex+exdx}=(x1)2ex+2{xex}+c={(x1)22x}ex+c={(x22x+1)2x}ex+c=(x2+1)ex+cg(x)=c(x2+1)exx.

Leave a Reply

Your email address will not be published. Required fields are marked *