Menu Close

consider-the-general-definite-intergral-I-n-0-pi-2-sin-n-xdx-a-prove-that-for-n-2-nI-n-n-1-I-n-2-b-Find-the-values-of-i-0-pi-2-sin-5-dx-ii-0-pi-2-sin-6-dx-




Question Number 63519 by Rio Michael last updated on 05/Jul/19
consider the general definite intergral     I_n =∫_0 ^(π/2) sin^n xdx  a) prove that for n≥2, nI_n =(n−1)I_(n−2) .  b) Find the values of  i)∫_0 ^(π/2) sin^5 dx   ii) ∫_0 ^(π/2) sin^6 dx
considerthegeneraldefiniteintergralIn=0π2sinnxdxa)provethatforn2,nIn=(n1)In2.b)Findthevaluesofi)0π2sin5dxii)0π2sin6dx
Commented by Prithwish sen last updated on 05/Jul/19
I_n =∫_0 ^(π/2) sin^(n−1) x sinxdx,  using by parts  =[−sin^(n−1) xcosx]_0 ^(π/2)  + (n−1)∫_0 ^(π/2) sin^(n−2) x(1−sin^2 x)^ dx  = (n−1)I_(n−2) −(n−1)I_n   nI_n  = (n−1)I_(n−2)    proved  ∫_0 ^(π/2) sin^5 x dx = (((5−1))/5)I_3  = (4/5).(((3−1))/3) I_(3−2) = (4/5).(2/3).I   =(8/(15 )) ∫_0 ^(π/2) sinx dx = −(8/(15)) (cosx)_0 ^(π/2)  = (8/(15))  similarly you can deduce (ii)
In=0π2sinn1xsinxdx,usingbypartsMissing \left or extra \right=(n1)In2(n1)InnIn=(n1)In2proved0π2sin5xdx=(51)5I3=45.(31)3I32=45.23.I=8150π2sinxdx=815(cosx)0π2=815similarlyyoucandeduce(ii)
Commented by Rio Michael last updated on 05/Jul/19
so ii)  becomes  ((5π)/(32))?
soii)becomes5π32?
Commented by Prithwish sen last updated on 05/Jul/19
yes
yes
Commented by Rio Michael last updated on 05/Jul/19
okay sir thanks
okaysirthanks

Leave a Reply

Your email address will not be published. Required fields are marked *