Menu Close

Consider-the-iteration-x-k-1-x-k-f-x-2-f-x-k-f-x-k-f-x-k-k-0-1-2-for-the-solution-of-f-x-0-Explain-the-connection-with-Newton-s-method-and-show-that-x-k-converges-qu




Question Number 18349 by Yozzzzy last updated on 19/Jul/17
Consider the iteration  x_(k+1) =x_k −(([f(x)]^2 )/(f(x_k +f(x_k ))−f(x_k ))),     k=0,1,2,...  for the solution of f(x)=0. Explain the  connection with Newton′s method, and show  that (x_k ) converges quadratically if x_0  is  sufficiently close to the solution.
$${Consider}\:{the}\:{iteration} \\ $$$${x}_{{k}+\mathrm{1}} ={x}_{{k}} −\frac{\left[{f}\left({x}\right)\right]^{\mathrm{2}} }{{f}\left({x}_{{k}} +{f}\left({x}_{{k}} \right)\right)−{f}\left({x}_{{k}} \right)},\:\:\:\:\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},… \\ $$$${for}\:{the}\:{solution}\:{of}\:{f}\left({x}\right)=\mathrm{0}.\:{Explain}\:{the} \\ $$$${connection}\:{with}\:{Newton}'{s}\:{method},\:{and}\:{show} \\ $$$${that}\:\left({x}_{{k}} \right)\:{converges}\:{quadratically}\:{if}\:{x}_{\mathrm{0}} \:{is} \\ $$$${sufficiently}\:{close}\:{to}\:{the}\:{solution}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *