Menu Close

Consider-the-polynomial-P-x-x-10-6x-9-11x-8-3x-2-18x-7-Calculate-P-3-2-5-




Question Number 154959 by mathdanisur last updated on 23/Sep/21
Consider the polynomial  P(x)=x^(10) -6x^9 -11x^8 +3x^2 -18x-7  Calculate:  P(3+2(√5))
ConsiderthepolynomialP(x)=x106x911x8+3x218x7Calculate:P(3+25)
Commented by prakash jain last updated on 23/Sep/21
x^(10) −6x^9 −11x^8 +3x^2 −18x−7  =x^8 (x^2 −6x−11)+3x^2 −18x−7  =x^8 [(x−3)^2 −20]+3x^2 −18x+27−34  =x^8 (0)+3(x−3)^2 −34  =3×20−34  =26
x106x911x8+3x218x7=x8(x26x11)+3x218x7=x8[(x3)220]+3x218x+2734=x8(0)+3(x3)234=3×2034=26
Commented by mathdanisur last updated on 23/Sep/21
Thankyou Ser, very nice
ThankyouSer,verynice
Answered by Rasheed.Sindhi last updated on 23/Sep/21
P(x)=x^(10) -6x^9 -11x^8 +3x^2 -18x-7;P(3+2(√5) )=?     =x^(10) -6x^9 -11x^8 +3x^2 -18x-33+26    =x^8 (x^2 −6x−11)+3(x^2 −6x−11)+26    =(x^2 −6x−11_(P_1 (x)) )(x^8 +3)+26  P(x)=P_1 (x).(x^8 +3)+26  P_1 (x)=(3+2(√5))^2 −6(3+2(√5))−11          =9+20+12(√5) −18−12(√5) −11=0  P(3+2(√5) )=(0)((3+2(√5))^8 +3)+26=26  P(3+2(√5) )=26
P(x)=x106x911x8+3x218x7;P(3+25)=?=x106x911x8+3x218x33+26=x8(x26x11)+3(x26x11)+26=(x26x11P1(x))(x8+3)+26P(x)=P1(x).(x8+3)+26P1(x)=(3+25)26(3+25)11=9+20+1251812511=0P(3+25)=(0)((3+25)8+3)+26=26P(3+25)=26
Commented by mathdanisur last updated on 23/Sep/21
Very nice solution Ser, thankyou
VerynicesolutionSer,thankyou
Answered by Rasheed.Sindhi last updated on 24/Sep/21
P(x)=x^(10) -6x^9 -11x^8 +3x^2 -18x-7  P(3+2(√5))=?                                                  _(−)   BY Synthetic Division  •If  P(x) is divided by x−k then  remainder=P(k)  •k is called multiplyer and here  k=3+2(√5)     [((3+2(√5)_(⌣) ),,),(1,,1),((−6),(3+2(√5)),(−3+2(√5))),((−11),(11),0),(0,0,0),(0,0,0),(0,0,0),(0,0,0),(0,0,0),(3,0,3),((−18),(9+6(√5)),(−9+6(√5))),((−7),(33),(26)) ]    ∴P(3+2(√5))=26
P(x)=x106x911x8+3x218x7P(3+25)=?BYSyntheticDivisionIfP(x)isdividedbyxkthenremainder=P(k)kiscalledmultiplyerandherek=3+25[3+251163+253+2511110000000000000000303189+659+6573326]P(3+25)=26
Commented by mathdanisur last updated on 24/Sep/21
Yes Ser, cool, thank you
YesSer,cool,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *