Menu Close

Consider-the-sequence-defined-by-0-lt-u-0-lt-1-and-n-N-u-n-1-u-n-u-n-2-1-Show-that-the-sequence-u-n-converges-What-is-its-limit-2-Show-that-the-series-with-general-term-u-n-2-conv




Question Number 127876 by Ar Brandon last updated on 02/Jan/21
Consider the sequence defined by: 0<u_0 <1 and āˆ€nāˆˆN, u_(n+1) =u_n āˆ’u_n ^2 .  1. Show that the sequence (u_n ) converges. What is its limit ?  2. Show that the series with general term u_n ^2  converges.  3. Show that the series with general terms ln((u_(n+1) /u_n )) and u_n  diverge.
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{defined}\:\mathrm{by}:\:\mathrm{0}<\mathrm{u}_{\mathrm{0}} <\mathrm{1}\:\mathrm{and}\:\forall\mathrm{n}\in\mathbb{N},\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} āˆ’\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} . \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{u}_{\mathrm{n}} \right)\:\mathrm{converges}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{its}\:\mathrm{limit}\:? \\ $$$$\mathrm{2}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{series}\:\mathrm{with}\:\mathrm{general}\:\mathrm{term}\:\mathrm{u}_{\mathrm{n}} ^{\mathrm{2}} \:\mathrm{converges}. \\ $$$$\mathrm{3}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{series}\:\mathrm{with}\:\mathrm{general}\:\mathrm{terms}\:\mathrm{ln}\left(\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }\right)\:\mathrm{and}\:\mathrm{u}_{\mathrm{n}} \:\mathrm{diverge}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *