Menu Close

Consider-the-sequences-u-n-and-v-n-defined-by-u-0-1-u-n-1-2u-n-v-n-u-n-v-n-and-v-0-2-v-n-1-u-n-v-n-2-n-N-1-Show-that-u-n-




Question Number 100769 by Rio Michael last updated on 28/Jun/20
Consider the sequences (u_n ) and (v_n ) defined by    { ((u_0  = 1)),((u_(n+1)  = ((2u_n v_n )/(u_n  + v_n )))) :} and  { ((v_0  = 2)),((v_(n+1)  = ((u_n  + v_n )/2))) :}  ∀ n∈ N  (1) Show that (u_n ) and (v_n ) are strictly positive also   Show that (u_n ) and (v_n  ) are of opposite sense of variation.  (2) let w_n  = v_n −u_n   show that  0 ≤ w_(n+1)  ≤ (1/2)w_n   (3) Prove by induction that 0 ≤ w_n  ≤ (1/2^n )
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{sequences}\:\left({u}_{{n}} \right)\:\mathrm{and}\:\left({v}_{{n}} \right)\:\mathrm{defined}\:\mathrm{by} \\ $$$$\:\begin{cases}{{u}_{\mathrm{0}} \:=\:\mathrm{1}}\\{{u}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{2}{u}_{{n}} {v}_{{n}} }{{u}_{{n}} \:+\:{v}_{{n}} }}\end{cases}\:\mathrm{and}\:\begin{cases}{{v}_{\mathrm{0}} \:=\:\mathrm{2}}\\{{v}_{{n}+\mathrm{1}} \:=\:\frac{{u}_{{n}} \:+\:{v}_{{n}} }{\mathrm{2}}}\end{cases}\:\:\forall\:{n}\in\:\mathbb{N} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Show}\:\mathrm{that}\:\left({u}_{{n}} \right)\:\mathrm{and}\:\left({v}_{{n}} \right)\:\mathrm{are}\:\mathrm{strictly}\:\mathrm{positive}\:\mathrm{also} \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\left({u}_{{n}} \right)\:\mathrm{and}\:\left({v}_{{n}} \:\right)\:\mathrm{are}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{sense}\:\mathrm{of}\:\mathrm{variation}. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{let}\:{w}_{{n}} \:=\:{v}_{{n}} −{u}_{{n}} \:\:\mathrm{show}\:\mathrm{that}\:\:\mathrm{0}\:\leqslant\:{w}_{{n}+\mathrm{1}} \:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}{w}_{{n}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Prove}\:\mathrm{by}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{0}\:\leqslant\:{w}_{{n}} \:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *