Menu Close

Consider-the-system-in-N-3-S-p-2-q-2-r-2-q-p-r-24-r-lt-p-q-Show-that-the-triplet-p-q-r-is-solution-to-S-if-and-only-if-r-lt-12-p-and-q-are-solutions-to-the-equation-n-2-




Question Number 96287 by Ar Brandon last updated on 31/May/20
Consider the system in N^3   (S):  { ((p^2 +q^2 =r^2 )),((q+p+r=24)),((r<p+q)) :}  Show that the triplet (p:q:r) is solution to (S) if  and only if r<12. p and q are solutions to the equation;  n^2 −(24−r)n+24(12−r)=0 where n is an unknown.p
$$\mathcal{C}\mathrm{onsider}\:\mathrm{the}\:\mathrm{system}\:\mathrm{in}\:\mathbb{N}^{\mathrm{3}} \\ $$$$\left(\mathrm{S}\right):\:\begin{cases}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{r}^{\mathrm{2}} }\\{\mathrm{q}+\mathrm{p}+\mathrm{r}=\mathrm{24}}\\{\mathrm{r}<\mathrm{p}+\mathrm{q}}\end{cases} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triplet}\:\left(\mathrm{p}:\mathrm{q}:\mathrm{r}\right)\:\mathrm{is}\:\mathrm{solution}\:\mathrm{to}\:\left(\mathrm{S}\right)\:\mathrm{if} \\ $$$$\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\mathrm{r}<\mathrm{12}.\:\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:\mathrm{are}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}; \\ $$$$\mathrm{n}^{\mathrm{2}} −\left(\mathrm{24}−\mathrm{r}\right)\mathrm{n}+\mathrm{24}\left(\mathrm{12}−\mathrm{r}\right)=\mathrm{0}\:\mathrm{where}\:\mathrm{n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{unknown}.\mathrm{p} \\ $$
Answered by maths mind last updated on 31/May/20
(p+q)^2 ≥p^2 +q^2 ⇒p+q+r≥2r⇔24≥2r⇒r≤12  (p+q)^2 =(24−r)^2 ⇔p^2 +q^2 +2pq=(24−r)^2   ⇒r^2 +2pq=576−48r+r^2   ⇒pq=288−24r  p+q=24−r⇒(p,q)/solution of  X^2 −(24−r)X+288−24r=0  ⇔n^2 −(24−r)n+12(24−2r)=0
$$\left({p}+{q}\right)^{\mathrm{2}} \geqslant{p}^{\mathrm{2}} +{q}^{\mathrm{2}} \Rightarrow{p}+{q}+{r}\geqslant\mathrm{2}{r}\Leftrightarrow\mathrm{24}\geqslant\mathrm{2}{r}\Rightarrow{r}\leqslant\mathrm{12} \\ $$$$\left({p}+{q}\right)^{\mathrm{2}} =\left(\mathrm{24}−{r}\right)^{\mathrm{2}} \Leftrightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{2}{pq}=\left(\mathrm{24}−{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}^{\mathrm{2}} +\mathrm{2}{pq}=\mathrm{576}−\mathrm{48}{r}+{r}^{\mathrm{2}} \\ $$$$\Rightarrow{pq}=\mathrm{288}−\mathrm{24}{r} \\ $$$${p}+{q}=\mathrm{24}−{r}\Rightarrow\left({p},{q}\right)/{solution}\:{of} \\ $$$${X}^{\mathrm{2}} −\left(\mathrm{24}−{r}\right){X}+\mathrm{288}−\mathrm{24}{r}=\mathrm{0} \\ $$$$\Leftrightarrow{n}^{\mathrm{2}} −\left(\mathrm{24}−{r}\right){n}+\mathrm{12}\left(\mathrm{24}−\mathrm{2}{r}\right)=\mathrm{0} \\ $$
Commented by Ar Brandon last updated on 31/May/20
Thank you ��

Leave a Reply

Your email address will not be published. Required fields are marked *