Menu Close

consider-the-triple-of-real-numbers-x-y-z-defined-by-the-addittion-x-y-z-x-y-z-x-x-y-y-z-z-and-scalar-multiplication-by-x-y-z-0-0-0-Show-that-all-axioms-for-a-vector-space-are-




Question Number 61840 by psyche last updated on 10/Jun/19
consider the triple of real numbers (x,y,z)  defined by the addittion (x,y,z)+(x′,y′,z′)=(x+x′,y+y′,z+z′)  and scalar multiplication by   𝛂(x,y,z)=(0,0,0).   Show that all axioms for a vector space are satisfied except axiom 8.
considerthetripleofrealnumbers(x,y,z)definedbytheaddittion(x,y,z)+(x,y,z)=(x+x,y+y,z+z)andscalarmultiplicationbyα(x,y,z)=(0,0,0).Showthatallaxiomsforavectorspacearesatisfiedexceptaxiom8.
Answered by arcana last updated on 10/Jun/19
if ∀(x,y,z)∈R^3   1∙(x,y,z)=(0,0,0)=(x,y,z) iff x=0,  y=0,z=0
if(x,y,z)R31(x,y,z)=(0,0,0)=(x,y,z)iffx=0,y=0,z=0
Commented by psyche last updated on 10/Jun/19
please, complete the proof
please,completetheproof
Commented by arcana last updated on 10/Jun/19
axiom 1,2,3,4 define (R^3 ,“+”) is a structure of group  with sum usual in R^3   we need a field K because define ∙ operation.  elements in K are scalars, elements inR^3  are vectors  if R=K (field)             ∙:R×R^3 →R^3               (α,a)→α∙a  axiom5  α,β∈R,(x,y,z)∈R^3   α+β∈R  ⇒(α+β)∙(x,y,z)=(0,0,0) def. “∙”  β∙(x,y,z)=(0,0,0) ; β∙(x,y,z)=(0,0,0)    ⇒(α+β)∙(x,y,z)=α∙(x,y,z)+β∙(x,y,z)    axiom 6  α∈R,(x,y,z),(x′,y′,z′)∈R^3   α∙[(x,y,z)+(x′,y′,z′)]=α∙(x+x′,y+y′,z+z′)  (x+x′,y+y′,z+z′)∈R^3     ⇒α∙(x+x′,y+y′,z+z′)=(0,0,0)  α∙[(x,y,z)+(x′,y′,z′)]α∙(x,y,z)=(0,0,0) ; α∙(x′,y′,z′)=(0,0,0)    ⇒α∙[(x,y,z)+(x′,y′,z′)]=α∙(x,y,z)+α∙(x′,y′,z′)    axiom 7  α,β∈R,(x,y,z)∈R^3 .αβ∈R  (αβ)∙(x,y,z)=(0,0,0)  β∙(x,y,z)=(0,0,0) ⇒α∙[β∙(x,y,z)]=α∙(0,0,0)=(0,0,0)    ⇒(αβ)∙(x,y,z)=α∙[β∙(x,y,z)]
axiom1,2,3,4define(R3,+)isastructureofgroupwithsumusualinR3weneedafieldKbecausedefineoperation.elementsinKarescalars,elementsinR3arevectorsifR=K(field):R×R3R3(α,a)αaaxiom5α,βR,(x,y,z)R3α+βR(α+β)(x,y,z)=(0,0,0)def.β(x,y,z)=(0,0,0);β(x,y,z)=(0,0,0)(α+β)(x,y,z)=α(x,y,z)+β(x,y,z)axiom6αR,(x,y,z),(x,y,z)R3α[(x,y,z)+(x,y,z)]=α(x+x,y+y,z+z)(x+x,y+y,z+z)R3α(x+x,y+y,z+z)=(0,0,0)α[(x,y,z)+(x,y,z)]α(x,y,z)=(0,0,0);α(x,y,z)=(0,0,0)α[(x,y,z)+(x,y,z)]=α(x,y,z)+α(x,y,z)axiom7α,βR,(x,y,z)R3.αβR(αβ)(x,y,z)=(0,0,0)β(x,y,z)=(0,0,0)α[β(x,y,z)]=α(0,0,0)=(0,0,0)(αβ)(x,y,z)=α[β(x,y,z)]

Leave a Reply

Your email address will not be published. Required fields are marked *