consider-the-triple-of-real-numbers-x-y-z-defined-by-the-addittion-x-y-z-x-y-z-x-x-y-y-z-z-and-scalar-multiplication-by-x-y-z-0-0-0-Show-that-all-axioms-for-a-vector-space-are- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 61840 by psyche last updated on 10/Jun/19 considerthetripleofrealnumbers(x,y,z)definedbytheaddittion(x,y,z)+(x′,y′,z′)=(x+x′,y+y′,z+z′)andscalarmultiplicationbyα(x,y,z)=(0,0,0).Showthatallaxiomsforavectorspacearesatisfiedexceptaxiom8. Answered by arcana last updated on 10/Jun/19 if∀(x,y,z)∈R31⋅(x,y,z)=(0,0,0)=(x,y,z)iffx=0,y=0,z=0 Commented by psyche last updated on 10/Jun/19 please,completetheproof Commented by arcana last updated on 10/Jun/19 axiom1,2,3,4define(R3,“+″)isastructureofgroupwithsumusualinR3weneedafieldKbecausedefine⋅operation.elementsinKarescalars,elementsinR3arevectorsifR=K(field)⋅:R×R3→R3(α,a)→α⋅aaxiom5α,β∈R,(x,y,z)∈R3α+β∈R⇒(α+β)⋅(x,y,z)=(0,0,0)def.“⋅″β⋅(x,y,z)=(0,0,0);β⋅(x,y,z)=(0,0,0)⇒(α+β)⋅(x,y,z)=α⋅(x,y,z)+β⋅(x,y,z)axiom6α∈R,(x,y,z),(x′,y′,z′)∈R3α⋅[(x,y,z)+(x′,y′,z′)]=α⋅(x+x′,y+y′,z+z′)(x+x′,y+y′,z+z′)∈R3⇒α⋅(x+x′,y+y′,z+z′)=(0,0,0)α⋅[(x,y,z)+(x′,y′,z′)]α⋅(x,y,z)=(0,0,0);α⋅(x′,y′,z′)=(0,0,0)⇒α⋅[(x,y,z)+(x′,y′,z′)]=α⋅(x,y,z)+α⋅(x′,y′,z′)axiom7α,β∈R,(x,y,z)∈R3.αβ∈R(αβ)⋅(x,y,z)=(0,0,0)β⋅(x,y,z)=(0,0,0)⇒α⋅[β⋅(x,y,z)]=α⋅(0,0,0)=(0,0,0)⇒(αβ)⋅(x,y,z)=α⋅[β⋅(x,y,z)] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: elemeary-calculus-if-sin-3x-cos-3x-m-sin-x-cos-x-n-then-find-the-relatiomship-between-m-and-n-independent-of-x-Next Next post: Question-127377 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.