Menu Close

Considering-y-x-3-px-q-If-dy-dx-x-0-2-p-3-if-d-y-x-dx-x-0-3-q-2-roots-of-the-cubic-eq-n-are-x-3-6-6-1-3-




Question Number 27046 by ajfour last updated on 01/Jan/18
Considering y=x^3 +px+q  If     (dy/dx)∣_(x=α) =0  ⇒  α^2 =−(p/3)  if   ((d(y/x))/dx)∣_(x=β) =0   ⇒ β^( 3) =(q/2)  roots of the cubic  eq^n  are:      x=[−β^( 3) ±(√(β^( 6) −α^6 )) ]^(1/3)                  −[β^( 3) ±(√(β^( 6) −α^6 )) ]^(1/3)  .   Why such a connection?  If equation is quadratic even_      y=ax^2 +bx+c  (dy/dx)∣_(x=α) =0   ⇒  α=−(b/(2a))        ((d(y/x))/dx)∣_(x=β) =0  ⇒ β^( 2) =(c/a)  roots of quadratic eq. are:      x=𝛂±(√(𝛂^2 −𝛃^( 2) ))   why such a connection ?
$${Considering}\:\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{px}}+\boldsymbol{{q}} \\ $$$${If}\:\:\:\:\:\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\Rightarrow\:\:\alpha^{\mathrm{2}} =−\frac{{p}}{\mathrm{3}} \\ $$$${if}\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\:\Rightarrow\:\beta^{\:\mathrm{3}} =\frac{{q}}{\mathrm{2}} \\ $$$${roots}\:{of}\:{the}\:{cubic}\:\:{eq}^{{n}} \:{are}: \\ $$$$\:\:\:\:{x}=\left[−\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\left[\beta^{\:\mathrm{3}} \pm\sqrt{\beta^{\:\mathrm{6}} −\alpha^{\mathrm{6}} }\:\right]^{\mathrm{1}/\mathrm{3}} \:. \\ $$$$\:{Why}\:{such}\:{a}\:{connection}? \\ $$$${If}\:{equation}\:{is}\:{quadratic}\:{even\_} \\ $$$$\:\:\:\:\boldsymbol{{y}}=\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}} \\ $$$$\frac{{dy}}{{dx}}\mid_{{x}=\alpha} =\mathrm{0}\:\:\:\Rightarrow\:\:\alpha=−\frac{{b}}{\mathrm{2}{a}} \\ $$$$\:\:\:\:\:\:\frac{{d}\left({y}/{x}\right)}{{dx}}\mid_{{x}=\beta} =\mathrm{0}\:\:\Rightarrow\:\beta^{\:\mathrm{2}} =\frac{{c}}{{a}} \\ $$$${roots}\:{of}\:{quadratic}\:{eq}.\:{are}: \\ $$$$\:\:\:\:{x}=\boldsymbol{\alpha}\pm\sqrt{\boldsymbol{\alpha}^{\mathrm{2}} −\boldsymbol{\beta}^{\:\mathrm{2}} }\: \\ $$$${why}\:{such}\:{a}\:{connection}\:?\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *