Menu Close

Considering-y-x-3-px-q-If-dy-dx-x-0-2-p-3-if-d-y-x-dx-x-0-3-q-2-roots-of-the-cubic-eq-n-are-x-3-6-6-1-3-




Question Number 27046 by ajfour last updated on 01/Jan/18
Considering y=x^3 +px+q  If     (dy/dx)∣_(x=α) =0  ⇒  α^2 =−(p/3)  if   ((d(y/x))/dx)∣_(x=β) =0   ⇒ β^( 3) =(q/2)  roots of the cubic  eq^n  are:      x=[−β^( 3) ±(√(β^( 6) −α^6 )) ]^(1/3)                  −[β^( 3) ±(√(β^( 6) −α^6 )) ]^(1/3)  .   Why such a connection?  If equation is quadratic even_      y=ax^2 +bx+c  (dy/dx)∣_(x=α) =0   ⇒  α=−(b/(2a))        ((d(y/x))/dx)∣_(x=β) =0  ⇒ β^( 2) =(c/a)  roots of quadratic eq. are:      x=𝛂±(√(𝛂^2 −𝛃^( 2) ))   why such a connection ?
Consideringy=x3+px+qIfdydxx=α=0α2=p3ifd(y/x)dxx=β=0β3=q2rootsofthecubiceqnare:x=[β3±β6α6]1/3[β3±β6α6]1/3.Whysuchaconnection?Ifequationisquadraticeven_y=ax2+bx+cdydxx=α=0α=b2ad(y/x)dxx=β=0β2=carootsofquadraticeq.are:x=α±α2β2whysuchaconnection?

Leave a Reply

Your email address will not be published. Required fields are marked *