Menu Close

construct-an-analytic-function-f-z-whose-real-part-is-e-x-cos-y-




Question Number 57001 by nisha sinah last updated on 28/Mar/19
construct an analytic function f(z) whose real part is e^x cos y
$${construct}\:{an}\:{analytic}\:{function}\:{f}\left({z}\right)\:{whose}\:{real}\:{part}\:{is}\:{e}^{{x}} \mathrm{cos}\:{y} \\ $$
Commented by 121194 last updated on 28/Mar/19
f(z)=e^z   e^z =e^(x+iy) =e^x cos y+ie^x sin y
$${f}\left({z}\right)={e}^{{z}} \\ $$$${e}^{{z}} ={e}^{{x}+{iy}} ={e}^{{x}} \mathrm{cos}\:{y}+{ie}^{{x}} \mathrm{sin}\:{y} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *