Convergence-of-1-I-1-e-t-5-sin-lnt-t-1-3-2-dt-2-I-1-lnx-x-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 79325 by Henri Boucatchou last updated on 24/Jan/20 Convergenceof:1)I=∫1∞e−t/5∣sin(lnt)∣(t−1)3/2dt2)I=∫1∞lnx(x−1)xdx Commented by mathmax by abdo last updated on 24/Jan/20 1)changementt−1=xgiveI=∫1+∞e−t5∣sin(lnt)∣(t−1)32dt=∫0∞e−1+x5∣sin(ln(1+x)∣x32dx=∫0∞φ(x)dxI=∫01(…)dx+∫1+∞(…)dxatV(0)∣sin(ln(1+x)∣∼∣sin(x)∣∼∣x∣⇒φ(x)∼e−15xx32=e−15x12and∫01e−15x−12dxconvergesat+∞∣φ(x)∣⩽e−1+x5x32⇒∫1+∞∣φ(x)∣dx⩽∫1+∞x−32e−1+x5dxwehavelimx2x−32e−1+x5=0⇒thisintegralconverges⇒Iconverges Commented by mathmax by abdo last updated on 24/Jan/20 2)I=∫1+∞lnx(x−1)xdxchangementlnx=tgivelnx=t2⇒x=et2⇒I=∫0∞t(et2−1)et22×2tet2dt=∫0∞2t2et22et2−1dt=∫0∞2t2e−t2et221−e−t2dt=∫0∞2t2e−t221−e−t2dt=∫01(…)dt+∫1+∞(…)dtatV(0)e−t2∼1−t2⇒1−e−t2∼1−1+t2⇒⇒2t2e−t221−e−t2∼2e−t22→2(t→0)⇒∫012te−t221−e−t2dtconvergesletξ>0wehavelimt→+∞t1+ξ×2te−t221−e−t2=0⇒∫1+∞2t2e−t221−e−t2convergesfinallyIisconvergent Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-144858Next Next post: x-x-1-x-x-2-x-1-find-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.