Menu Close

Convergence-of-1-I-1-e-t-5-sin-lnt-t-1-3-2-dt-2-I-1-lnx-x-1-x-dx-




Question Number 79325 by Henri Boucatchou last updated on 24/Jan/20
 Convergence  of :    1)   I=∫_1 ^( ∞) ((e^(−t/5) ∣sin(lnt)∣)/((t−1)^(3/2) ))dt    2)   I=∫_1 ^∞ ((√(lnx))/((x−1)(√x)))dx
Convergenceof:1)I=1et/5sin(lnt)(t1)3/2dt2)I=1lnx(x1)xdx
Commented by mathmax by abdo last updated on 24/Jan/20
1) changement t−1 =x give  I =∫_1 ^(+∞)  ((e^(−(t/5)) ∣sin(lnt)∣)/((t−1)^(3/2) ))dt =∫_0 ^∞   ((e^(−((1+x)/5)) ∣sin(ln(1+x)∣)/x^(3/2) )dx=∫_0 ^∞  ϕ(x)dx  I =∫_0 ^1 (...)dx +∫_1 ^(+∞) (...)dx  at V(0)   ∣sin(ln(1+x)∣∼∣sin(x)∣∼∣x∣  ⇒ ϕ(x) ∼ ((e^(−(1/5)) x)/x^(3/2) ) =(e^(−(1/5)) /x^(1/2) )  and ∫_0 ^1  e^(−(1/5))  x^(−(1/2))  dx converges  at +∞  ∣ϕ(x)∣ ≤(e^(−((1+x)/5)) /x^(3/2) ) ⇒∫_1 ^(+∞) ∣ϕ(x)∣dx ≤∫_1 ^(+∞) x^(−(3/2))  e^(−((1+x)/5))  dx  we have lim x^2  x^(−(3/2))  e^(−((1+x)/5)) =0 ⇒this integral converges ⇒  I converges
1)changementt1=xgiveI=1+et5sin(lnt)(t1)32dt=0e1+x5sin(ln(1+x)x32dx=0φ(x)dxI=01()dx+1+()dxatV(0)sin(ln(1+x)∣∼∣sin(x)∣∼∣xφ(x)e15xx32=e15x12and01e15x12dxconvergesat+φ(x)e1+x5x321+φ(x)dx1+x32e1+x5dxwehavelimx2x32e1+x5=0thisintegralconvergesIconverges
Commented by mathmax by abdo last updated on 24/Jan/20
2)  I =∫_1 ^(+∞)  ((√(lnx))/((x−1)(√x)))dx  changement (√(lnx))=t give lnx =t^2  ⇒  x =e^t^2     ⇒ I =∫_0 ^∞  (t/((e^t^2  −1)e^(t^2 /2) )) ×2t e^t^2  dt =∫_0 ^∞    ((2t^2  e^(t^2 /2) )/(e^t^2  −1))dt  =_ ∫_0 ^∞   ((2t^2 e^(−t^2 )  e^(t^2 /2) )/(1−e^(−t^2 ) ))dt =∫_0 ^∞   ((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) ))dt =∫_0 ^1 (...)dt + ∫_1 ^(+∞)  (...)dt  at V(0) e^(−t^2 ) ∼1−t^2  ⇒1−e^(−t^2 ) ∼1−1+t^2 ⇒ ⇒((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) ∼2e^(−(t^2 /2))  →2 (t→0)  ⇒∫_0 ^1  ((2t e^(−(t^2 /2)) )/(1−e^(−t^2 ) ))dt converges  let ξ>0 we have  lim_(t→+∞)   t^(1+ξ)   ×((2t e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) =0 ⇒∫_1 ^(+∞)  ((2t^2  e^(−(t^2 /2)) )/(1−e^(−t^2 ) )) converges  finally I is convergent
2)I=1+lnx(x1)xdxchangementlnx=tgivelnx=t2x=et2I=0t(et21)et22×2tet2dt=02t2et22et21dt=02t2et2et221et2dt=02t2et221et2dt=01()dt+1+()dtatV(0)et21t21et211+t22t2et221et22et222(t0)012tet221et2dtconvergesletξ>0wehavelimt+t1+ξ×2tet221et2=01+2t2et221et2convergesfinallyIisconvergent

Leave a Reply

Your email address will not be published. Required fields are marked *