Menu Close

Convergence-of-I-0-e-t-e-t-e-2t-sint-dt-




Question Number 79913 by Henri Boucatchou last updated on 29/Jan/20
 Convergence  of  I=∫_0 ^( ∞) (e^t /(e^(−t) +e^(2t) ∣sint∣))dt
ConvergenceofI=0etet+e2tsintdt
Commented by mathmax by abdo last updated on 29/Jan/20
I =∫_0 ^∞   (e^(−t) /(e^(−3t)  +∣sint∣))dt =∫_0 ^(+∞)  (e^(−t) /(e^(−3t)  +∣sint∣))dt   we have  ∣sint∣≤1 ⇒e^(−3t)  +∣sint∣≤1+e^(−3t)  ⇒(1/(e^(−3t) +∣sint∣))≥(1/(1+e^(−3t) )) ⇒  ∫_0 ^∞   (e^(−t) /(e^(−3t)  +∣sint∣)) ≥∫_0 ^∞   (e^(−t) /(1+e^(−3t) )) dt  and this integrale diverges   because at +∞  (e^(−t) /(1+e^(−3t) )) ∼e^(2t)
I=0ete3t+sintdt=0+ete3t+sintdtwehavesint∣⩽1e3t+sint∣⩽1+e3t1e3t+sint11+e3t0ete3t+sint0et1+e3tdtandthisintegraledivergesbecauseat+et1+e3te2t

Leave a Reply

Your email address will not be published. Required fields are marked *