Menu Close

convert-this-D-E-to-exact-D-E-and-solve-it-ydx-x-1-y-dy-0-




Question Number 169549 by ali009 last updated on 02/May/22
convert this D.E to exact D.E and solve it  ydx+x(1+y)dy=0
$${convert}\:{this}\:{D}.{E}\:{to}\:{exact}\:{D}.{E}\:{and}\:{solve}\:{it} \\ $$$${ydx}+{x}\left(\mathrm{1}+{y}\right){dy}=\mathrm{0} \\ $$
Answered by aleks041103 last updated on 02/May/22
y+x(1+y)(dy/dx)=0  ⇒(1+y)(dy/dx)=−(y/x)  ⇒((1+y)/y)dy=−(dx/x)  ∫((1+y)/y)dy=y+ln(y)+C  ∫−(dx/x)=−ln(x)  ⇒y+ln(y)+ln(x)=C  ye^y =(c/x)  ⇒y(x)=W((c/x))
$${y}+{x}\left(\mathrm{1}+{y}\right)\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{1}+{y}\right)\frac{{dy}}{{dx}}=−\frac{{y}}{{x}} \\ $$$$\Rightarrow\frac{\mathrm{1}+{y}}{{y}}{dy}=−\frac{{dx}}{{x}} \\ $$$$\int\frac{\mathrm{1}+{y}}{{y}}{dy}={y}+{ln}\left({y}\right)+{C} \\ $$$$\int−\frac{{dx}}{{x}}=−{ln}\left({x}\right) \\ $$$$\Rightarrow{y}+{ln}\left({y}\right)+{ln}\left({x}\right)={C} \\ $$$${ye}^{{y}} =\frac{{c}}{{x}} \\ $$$$\Rightarrow{y}\left({x}\right)={W}\left(\frac{{c}}{{x}}\right) \\ $$
Commented by ali009 last updated on 02/May/22
well done
$${well}\:{done} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *