Menu Close

Correction-to-the-last-assignment-1-1-81-x-2-27-1-x-1-3-4-x-2-3-3-1-x-1-3-4x-8-3-3-3x-3-4x-8-3-3-3x-4x-8-3-3x-C-L-T-4x-3x-3-8-x-5-x-5-2-9-x-1-729-9-x-




Question Number 120241 by olalekanoriyomi last updated on 30/Oct/20
Correction to the last assignment    (1)(1/(81^(x−2) )) = 27^(1−x)   (1/3^(4(x−2)) )=3^(3(1−x))   (1/3^(4x−8) )=3^(3−3x)   3^(−4x+8) =3^(3−3x)   −4x+8=3−3x  C.L.T  −4x+3x=3−8  −x=−5  x=5    (2)9^x =(1/(729))  9^x =(1/3^6 )  3^(2x) =3^(−6)   2x=−6  x=((−6)/2)  x=−3    (3)16^x =0.125  2^(4x) =((125)/(1000))  2^(4x) =(1/8)  2^(4x) =2^(−3)   4x=−3  x=((−3)/4)    (4)a^(1/2) =4  a=
$$\boldsymbol{\mathrm{C}}{orrection}\:\boldsymbol{{to}}\:\boldsymbol{{the}}\:\boldsymbol{{last}}\:\boldsymbol{{assignment}} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{1}}{\mathrm{81}^{\boldsymbol{{x}}−\mathrm{2}} }\:=\:\mathrm{27}^{\mathrm{1}−\boldsymbol{{x}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\left(\boldsymbol{{x}}−\mathrm{2}\right)} }=\mathrm{3}^{\mathrm{3}\left(\mathrm{1}−\boldsymbol{{x}}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}\boldsymbol{{x}}−\mathrm{8}} }=\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$\mathrm{3}^{−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}} =\mathrm{3}^{\mathrm{3}−\mathrm{3}\boldsymbol{{x}}} \\ $$$$−\mathrm{4}\boldsymbol{{x}}+\mathrm{8}=\mathrm{3}−\mathrm{3}\boldsymbol{{x}} \\ $$$$\boldsymbol{{C}}.{L}.{T} \\ $$$$−\mathrm{4}{x}+\mathrm{3}{x}=\mathrm{3}−\mathrm{8} \\ $$$$−{x}=−\mathrm{5} \\ $$$${x}=\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{729}} \\ $$$$\mathrm{9}^{{x}} =\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} } \\ $$$$\mathrm{3}^{\mathrm{2}{x}} =\mathrm{3}^{−\mathrm{6}} \\ $$$$\mathrm{2}{x}=−\mathrm{6} \\ $$$${x}=\frac{−\mathrm{6}}{\mathrm{2}} \\ $$$${x}=−\mathrm{3} \\ $$$$ \\ $$$$\left(\mathrm{3}\right)\mathrm{16}^{{x}} =\mathrm{0}.\mathrm{125} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{125}}{\mathrm{1000}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2}^{\mathrm{4}{x}} =\mathrm{2}^{−\mathrm{3}} \\ $$$$\mathrm{4}{x}=−\mathrm{3} \\ $$$${x}=\frac{−\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$$$\left(\mathrm{4}\right){a}^{\mathrm{1}/\mathrm{2}} =\mathrm{4} \\ $$$${a}= \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *